10,706 research outputs found

    Chiral phase transition at high temperature and density in the QCD-like theory

    Get PDF
    The chiral phase transition at finite temperature T and/or chemical potential μ\mu is studied using the QCD-like theory with a variational approach. The ``QCD-like theory'' means the improved ladder approximation with an infrared cutoff in terms of a modified running coupling. The form of Cornwall-Jackiw-Tomboulis effective potential is modified by the use of the Schwinger-Dyson equation for generally nonzero current quark mass. We then calculate the effective potential at finite T and/or μ\mu and investigate the phase structure in the chiral limit. We have a second-order phase transition at Tc=129T_c=129 MeV for μ=0\mu=0 and a first-order one at μc=422\mu_c=422 MeV for T=0. A tricritical point in the T-μ\mu plane is found at T=107 MeV, μ=210\mu=210 MeV. The position is close to that of the random matrix model and some version of the Nambu-Jona-Lasinio model.Comment: 10 pages, 6 figures. Accepted for publication in Physical Review

    Enhancement of entanglement transfer in a spin chain by phase shift-control

    Get PDF
    We study the effect of a phase shift on the amount of transferrable two-spin entanglement in a spin chain. We consider a ferromagnetic Heisenberg/XY spin chain, both numerically and analytically, and two mechanisms to generate a phase shift, the Aharonov-Casher effect and the Dzyaloshinskii-Moriya interaction. In both cases, the maximum attainable entanglement is shown to be significantly enhanced, suggesting its potential usefulness in quantum information processing.Comment: 7 pages, 5 figures. v2: a fig added, the main text modified a bi

    Constituent quark model for nuclear stopping in high energy nuclear collisions

    Get PDF
    We study the nuclear stopping in high energy nuclear collisions using the constituent quark model. It is assumed that wounded nucleons with different number of interacted quarks hadronize in different ways. The probabilities of having such wounded nucleons are evaluated for proton-proton, proton-nucleus and nucleus-nucleus collisions. After examining our model in proton-proton and proton-nucleus collisions and fixing the hadronization functions, it is extended to nucleus-nucleus collisions. It is used to calculate the rapidity distribution and the rapidity shift of final state protons in nucleus-nucleus collisions. The computed results are in good agreement with the experimental data on ^{32}\mbox{S} +\ ^{32}\mbox{S} at Elab=200E_{lab} = 200 AGeV and ^{208}\mbox{Pb} +\ ^{208}\mbox{Pb} at Elab=160E_{lab} = 160 AGeV. Theoretical predictions are also given for proton rapidity distribution in ^{197}\mbox{Au} +\ ^{197}\mbox{Au} at s=200\sqrt{s} = 200 AGeV (BNL-RHIC). We predict that the nearly baryon free region will appear in the midrapidity region and the rapidity shift is Δy=2.22\langle \Delta y \rangle = 2.22.Comment: 40 pages, 16 Postscript figures, submitted to Phys. Rev.

    Online Self-Indexed Grammar Compression

    Full text link
    Although several grammar-based self-indexes have been proposed thus far, their applicability is limited to offline settings where whole input texts are prepared, thus requiring to rebuild index structures for given additional inputs, which is often the case in the big data era. In this paper, we present the first online self-indexed grammar compression named OESP-index that can gradually build the index structure by reading input characters one-by-one. Such a property is another advantage which enables saving a working space for construction, because we do not need to store input texts in memory. We experimentally test OESP-index on the ability to build index structures and search query texts, and we show OESP-index's efficiency, especially space-efficiency for building index structures.Comment: To appear in the Proceedings of the 22nd edition of the International Symposium on String Processing and Information Retrieval (SPIRE2015

    Minimization of deviations of gear real tooth surfaces determined by coordinate measurements

    Get PDF
    The deviations of a gear's real tooth surface from the theoretical surface are determined by coordinate measurements at the grid of the surface. A method was developed to transform the deviations from Cartesian coordinates to those along the normal at the measurement locations. Equations are derived that relate the first order deviations with the adjustment to the manufacturing machine-tool settings. The deviations of the entire surface are minimized. The minimization is achieved by application of the least-square method for an overdetermined system of linear equations. The proposed method is illustrated with a numerical example for hypoid gear and pinion

    Nucleon Flow and Fragment Flow in Heavy Ion Reactions

    Full text link
    The collective flow of nucleons and that of fragments in the 12C + 12C reaction below 150 MeV/nucleon are calculated with the antisymmetrized version of molecular dynamics combined with the statistical decay calculation. Density dependent Gogny force is used as the effective interaction. The calculated balance energy is about 100 MeV/nucleon, which is close to the observed value. Below the balance energy, the absolute value of the fragment flow is larger than that of nucleon flow, which is also in accordance with data. The dependence of the flow on the stochastic collision cross section and its origin are discussed. All the results are naturally understood by introducing the concept of two components of flow: the flow of dynamically emitted nucleons and the flow of the nuclear matter which contributes to both the flow of fragments and the flow of nucleons due to the statistical decay.Comment: 20 pages, PostScript figures, LaTeX with REVTeX and EPSF, KUNS 121

    Dipole Oscillations in Bose - Fermi Mixture in the Time-Dependent Grosspitaevskii and Vlasov equations

    Full text link
    We study the dipole collective oscillations in the bose-fermi mixture using a dynamical time-dependent approach, which are formulated with the time-dependent Gross-Pitaevskii equation and the Vlasov equation. We find big difference in behaviors of fermion oscillation between the time-dependent approach and usual approaches such as the random-phase approximation and the sum-rule approach. While the bose gas oscillates monotonously, the fermion oscillation shows a beat and a damping. When the amplitude is not minimal, the dipole oscillation of the fermi gas cannot be described with a simple center-of-mass motion.Comment: 17 pages text, and 15 figure

    Projection Operator Approach to Langevin Equations in ϕ4\phi^4 Theory

    Get PDF
    We apply the projection operator method (POM) to ϕ4\phi^4 theory and derive both quantum and semiclassical equations of motion for the soft modes. These equations have no time-convolution integral term, in sharp contrast with other well-known results obtained using the influence functional method (IFM) and the closed time path method (CTP). However, except for the fluctuation force field terms, these equations are similar to the corresponding equations obtained using IFM with the linear harmonic approximation, which was introduced to remove the time-convolution integral. The quantum equation of motion in POM can be regarded as a kind of quantum Langevin equation in which the fluctuation force field is given in terms of the operators of the hard modes. These operators are then replaced with c-numbers using a certain procedure to obtain a semiclassical Langevin equation. It is pointed out that there are significant differences between the fluctuation force fields introduced in this paper and those introduced in IFM. The arbitrariness of the definition of the fluctuation force field in IFM is also discussed.Comment: 35pages,2figures, Prog. Theor. Phys. Vol. 107 No. 5 in pres
    corecore