14,303 research outputs found

    Nuclear fragmentation by tunneling

    Full text link
    Fragmentation of nuclear system by tunneling is discussed in a molecular dynamics simulation coupled with imaginary time method. In this way we obtain informations on the fragmenting systems at low densities and temperatures. These conditions cannot be reached normally (i.e. above the barrier) in nucleus-nucleus or nucleon-nucleus collisions. The price to pay is the small probability of fragmentation by tunneling but we obtain observables which can be a clear signature of such phenomena.Comment: Phys.Rev.C (submitted

    Electron-Hole Asymmetry in Single-Walled Carbon Nanotubes Probed by Direct Observation of Transverse Quasi-Dark Excitons

    Full text link
    We studied the asymmetry between valence and conduction bands in single-walled carbon nanotubes (SWNTs) through the direct observation of spin-singlet transverse dark excitons using polarized photoluminescence excitation spectroscopy. The intrinsic electron-hole (e-h) asymmetry lifts the degeneracy of the transverse exciton wavefunctions at two equivalent K and K' valleys in momentum space, which gives finite oscillator strength to transverse dark exciton states. Chirality-dependent spectral weight transfer to transverse dark states was clearly observed, indicating that the degree of the e-h asymmetry depends on the specific nanotube structure. Based on comparison between theoretical and experimental results, we evaluated the band asymmetry parameters in graphene and various carbon nanotube structures.Comment: 11 pages, 4 figure

    Superconductivity without Local Inversion Symmetry; Multi-layer Systems

    Full text link
    While multi-layer systems can possess global inversion centers, they can have regions with locally broken inversion symmetry. This can modify the superconducting properties of such a system. Here we analyze two dimensional multi-layer systems yielding spatially modulated antisymmetric spin-orbit coupling (ASOC) and discuss superconductivity with mixed parity order parameters. In particular, the influence of ASOC on the spin susceptibility is investigated at zero temperature. For weak inter-layer coupling we find an enhanced spin susceptibility induced by ASOC, which hints the potential importance of this aspect for superconducting phase in specially structured superlattices.Comment: 4 pages, 2 figures, proceedings of the 26th International Conference on Low Temperature Physics (LT26

    Nucleon Flow and Fragment Flow in Heavy Ion Reactions

    Full text link
    The collective flow of nucleons and that of fragments in the 12C + 12C reaction below 150 MeV/nucleon are calculated with the antisymmetrized version of molecular dynamics combined with the statistical decay calculation. Density dependent Gogny force is used as the effective interaction. The calculated balance energy is about 100 MeV/nucleon, which is close to the observed value. Below the balance energy, the absolute value of the fragment flow is larger than that of nucleon flow, which is also in accordance with data. The dependence of the flow on the stochastic collision cross section and its origin are discussed. All the results are naturally understood by introducing the concept of two components of flow: the flow of dynamically emitted nucleons and the flow of the nuclear matter which contributes to both the flow of fragments and the flow of nucleons due to the statistical decay.Comment: 20 pages, PostScript figures, LaTeX with REVTeX and EPSF, KUNS 121

    K^+ momentum spectrum from (K^-,K^+) reactions in intranuclear cascade model

    Full text link
    In a framework of intranuclear cascade (INC) type calculation, we study a momentum spectrum in reactions \KK at a beam momentum of 1.65 GeV/c. INC model calculations are compared with the relativistic impulse approximation (RIA) calculations to perform the detailed study of the reaction mechanism. We find that the INC model can reproduce the experimental data on various targets. Especially, in the low-momentum region, the forward-angle cross sections of the (K,K+)(K^-,K^+) reaction on from light to heavy targets are consistently explained with the two-step strangeness exchange and production processes with various intermediate mesons, and ϕ\phi, a0a_0 and f0f_0 productions and their decay into K+KK^+K^-. In the two-step processes, inclusion of meson and hyperon resonances is found to be essential.Comment: LaTeX file and 12ps figure

    Isoscalar Giant Quadrupole Resonance State in the Relativistic Approach with the Momentum-Dependent Self-Energies

    Get PDF
    We study the excited energy of the isoscalar giant quadrupole resonance with the scaling method in the relativistic many-body framework. In this calculation we introduce the momentum-dependent parts of the Dirac self-energies arising from the one-pion exchange on the assumption of the pseudo-vector coupling with nucleon field. It is shown that this momentum-dependence enhances the Landau mass significantly and thus suppresses the quadrupole resonance energy even giving the small Dirac effective mass which causes a problem in the momentum-independent mean-field theory.Comment: 12pages, 2 Postscript figure

    Axion Production from Landau Quantization in the Strong Magnetic Field of Magnetars

    Full text link
    We utilize an exact quantum calculation to explore axion emission from electrons and protons in the presence of the strong magnetic field of magnetars. The axion is emitted via transitions between the Landau levels generated by the strong magnetic field. The luminosity of axions emitted by protons is shown to be much larger than that of electrons and becomes stronger with increasing matter density. Cooling by axion emission is shown to be much larger than neutrino cooling by the Urca processes. Consequently, axion emission in the crust may significantly contribute to the cooling of magnetars. In the high-density core, however, it may cause heating of the magnetar.Comment: 14 pages, 3 figure

    Noise-induced behaviors in neural mean field dynamics

    Full text link
    The collective behavior of cortical neurons is strongly affected by the presence of noise at the level of individual cells. In order to study these phenomena in large-scale assemblies of neurons, we consider networks of firing-rate neurons with linear intrinsic dynamics and nonlinear coupling, belonging to a few types of cell populations and receiving noisy currents. Asymptotic equations as the number of neurons tends to infinity (mean field equations) are rigorously derived based on a probabilistic approach. These equations are implicit on the probability distribution of the solutions which generally makes their direct analysis difficult. However, in our case, the solutions are Gaussian, and their moments satisfy a closed system of nonlinear ordinary differential equations (ODEs), which are much easier to study than the original stochastic network equations, and the statistics of the empirical process uniformly converge towards the solutions of these ODEs. Based on this description, we analytically and numerically study the influence of noise on the collective behaviors, and compare these asymptotic regimes to simulations of the network. We observe that the mean field equations provide an accurate description of the solutions of the network equations for network sizes as small as a few hundreds of neurons. In particular, we observe that the level of noise in the system qualitatively modifies its collective behavior, producing for instance synchronized oscillations of the whole network, desynchronization of oscillating regimes, and stabilization or destabilization of stationary solutions. These results shed a new light on the role of noise in shaping collective dynamics of neurons, and gives us clues for understanding similar phenomena observed in biological networks

    Quantum Molecular Dynamics Approach to the Nuclear Matter Below the Saturation Density

    Get PDF
    Quantum molecular dynamics is applied to study the ground state properties of nuclear matter at subsaturation densities. Clustering effects are observed as to soften the equation of state at these densities. The structure of nuclear matter at subsaturation density shows some exotic shapes with variation of the density.Comment: 21 pages of Latex (revtex), 9 Postscript figure
    corecore