6 research outputs found

    Assessment of intraoral mucosal pain induced by the application of capsaicin

    Get PDF
    Objective To develop an objective method for assessing nociceptive behaviour in an animal model of capsaicin-induced intraoral pain. Changes in nociceptive responses were also examined after injury to the inferior alveolar nerve (IAN). Design Nociceptive responses evoked by the intraoral application of various doses of capsaicin were analyzed in lightly anaesthetized rats. The number of c-Fos protein-like immunoreactive (Fos-LI) neurons in the medullary dorsal horn (MDH) induced by the intraoral application of capsaicin was measured. Behavioural and c-Fos responses were also examined 14 days after injury to the IAN. Results Larger doses of intraoral capsaicin (1, 10 and 100 μg) induced vigorous licking behaviour and c-Fos response in the MDH in a reproducible manner. The magnitudes of both behavioural activity and the c-Fos response from the 10 and 100 μg doses of capsaicin were significantly greater than that by the 1 μg dose. Injury to the IAN exaggerated the behavioural and c-Fos responses evoked by intraoral capsaicin. Conclusions The intraoral application of capsaicin is a valid and reliable method for studying intraoral pain and hyperalgesia following nerve injury

    Basic research and clinical investigations of the neural basis of orofacial pain

    Get PDF
    Background: Trigeminal nerve injury or orofacial inflammation causes severe pain in the orofacial regions innervated by uninjured nerves or uninflamed tissues as well as injured or inflamed tissues. Pathological orofacial pain associated with trigeminal nerve injury or inflammation is difficult to diagnose and treat. Highlights: To develop appropriate treatments for patients with orofacial pathological pain, various animal models of trigeminal nerve injury or orofacial inflammation have been developed. Further, the possible mechanisms involving the trigeminal ganglion (TG), trigeminal spinal subnucleus caudalis (Vc), and upper cervical spinal cord (C1-C2) have been studied. Conclusions: 1) Neurotransmitters released from the somata of TG neurons are involved in peripheral sensitization. 2) Neurotransmitter release from TG neurons is decreased by botulinum toxin-type A administration, suggesting that this toxin suppressed neurotransmitter release and alleviated the neuropathic pain-related behavior. 3) Altered states of glial cells and nociceptive neurons, in the Vc and C1-C2 are involved in pathological orofacial pain associated with trigeminal nerve injury or orofacial inflammation. 4) The trigeminal sensory nuclear complex, especially the trigeminal spinal subnucleus oralis, is involved in normal and pathological orofacial pain conditions after peripheral nerve injury. 5) Neuroimaging analyses have suggested functional changes in the central and peripheral nervous systems in neuropathic pain conditions

    知覚神経節内の神経伝達物質による痛み情報伝達

    Get PDF
    Despite the absence of synaptic contacts, cross-excitation of neurons in sensory ganglia during signal transmission is considered to be chemically mediated and appears increased in chronic pain states. In this study, we modulated neurotransmitter release in sensory neurons by direct application of type A botulinum neurotoxin (BoNT/A) to sensory ganglia in an animal model of neuropathic pain and evaluated the effect of this treatment on nocifensive. Unilateral sciatic nerve entrapment (SNE) reduced the ipsilateral hindpaw withdrawal threshold to mechanical stimulation and reduced hindpaw withdrawal latency to thermal stimulation. Direct application of BoNT/A to the ipsilateral L4 dorsal root ganglion (DRG) was localized in the cell bodies of the DRG and reversed the SNE-induced decreases in withdrawal thresholds within 2 days of BoNT/A administration. Results from this study suggest that neurotransmitter release within sensory ganglia is involved in the regulation of pain-related signal transmission

    Cross-Excitation in Peripheral Sensory Ganglia Associated with Pain Transmission

    No full text
    Despite the absence of synaptic contacts, cross-excitation of neurons in sensory ganglia during signal transmission is considered to be chemically mediated and appears increased in chronic pain states. In this study, we modulated neurotransmitter release in sensory neurons by direct application of type A botulinum neurotoxin (BoNT/A) to sensory ganglia in an animal model of neuropathic pain and evaluated the effect of this treatment on nocifensive. Unilateral sciatic nerve entrapment (SNE) reduced the ipsilateral hindpaw withdrawal threshold to mechanical stimulation and reduced hindpaw withdrawal latency to thermal stimulation. Direct application of BoNT/A to the ipsilateral L4 dorsal root ganglion (DRG) was localized in the cell bodies of the DRG and reversed the SNE-induced decreases in withdrawal thresholds within 2 days of BoNT/A administration. Results from this study suggest that neurotransmitter release within sensory ganglia is involved in the regulation of pain-related signal transmission
    corecore