157 research outputs found

    Parallel-propagating Fluctuations at Proton-kinetic Scales in the Solar Wind are Dominated by Kinetic Instabilities

    Get PDF
    We use magnetic helicity to characterise solar wind fluctuations at proton-kinetic scales from Wind observations. For the first time, we separate the contributions to helicity from fluctuations propagating at angles quasi-parallel and oblique to the local mean magnetic field, B0\mathbf{B}_0. We find that the helicity of quasi-parallel fluctuations is consistent with Alfv\'en-ion cyclotron and fast magnetosonic-whistler modes driven by proton temperature anisotropy instabilities and the presence of a relative drift between α\alpha-particles and protons. We also find that the helicity of oblique fluctuations has little dependence on proton temperature anisotropy and is consistent with fluctuations from the anisotropic turbulent cascade. Our results show that parallel-propagating fluctuations at proton-kinetic scales in the solar wind are dominated by proton temperature anisotropy instabilities and not the turbulent cascade. We also provide evidence that the behaviour of fluctuations at these scales is independent of the origin and macroscopic properties of the solar wind.Comment: Accepted for publication in ApJL. 6 Pages, 3 figures, 1 tabl

    Regulation of Proton–α Differential Flow by Compressive Fluctuations and Ion-scale Instabilities in the Solar Wind

    Get PDF
    Large-scale compressive slow-mode-like fluctuations can cause variations in the density, temperature, and magnetic-field magnitude in the solar wind. In addition, they also lead to fluctuations in the differential flow U pα between α-particles and protons (p), which is a common source of free energy for the driving of ion-scale instabilities. If the amplitude of the compressive fluctuations is sufficiently large, the fluctuating U pα intermittently drives the plasma across the instability threshold, leading to the excitation of ion-scale instabilities and thus the growth of corresponding ion-scale waves. The unstable waves scatter particles and reduce the average value of U pα . We propose that this “fluctuating-drift effect” maintains the average value of U pα well below the marginal instability threshold. We model the large-scale compressive fluctuations in the solar wind as long-wavelength slow-mode waves using a multi-fluid model. We numerically quantify the fluctuating-drift effect for the Alfvén/ion-cyclotron and fast-magnetosonic/whistler instabilities. We show that measurements of the proton–α differential flow and compressive fluctuations from the Wind spacecraft are consistent with our predictions for the fluctuating-drift effect. This effect creates a new channel for a direct cross-scale energy transfer from large-scale compressions to ion-scale fluctuations

    Observations of Energetic-particle Population Enhancements along Intermittent Structures near the Sun from the Parker Solar Probe

    Get PDF
    Observations at 1 au have confirmed that enhancements in measured energetic-particle (EP) fluxes are statistically associated with "rough" magnetic fields, i.e., fields with atypically large spatial derivatives or increments, as measured by the Partial Variance of Increments (PVI) method. One way to interpret this observation is as an association of the EPs with trapping or channeling within magnetic flux tubes, possibly near their boundaries. However, it remains unclear whether this association is a transport or local effect; i.e., the particles might have been energized at a distant location, perhaps by shocks or reconnection, or they might experience local energization or re-acceleration. The Parker Solar Probe (PSP), even in its first two orbits, offers a unique opportunity to study this statistical correlation closer to the corona. As a first step, we analyze the separate correlation properties of the EPs measured by the Integrated Science Investigation of the Sun (IS⊙IS) instruments during the first solar encounter. The distribution of time intervals between a specific type of event, i.e., the waiting time, can indicate the nature of the underlying process. We find that the IS⊙IS observations show a power-law distribution of waiting times, indicating a correlated (non-Poisson) distribution. Analysis of low-energy (~15 – 200 keV/nuc) IS⊙IS data suggests that the results are consistent with the 1 au studies, although we find hints of some unexpected behavior. A more complete understanding of these statistical distributions will provide valuable insights into the origin and propagation of solar EPs, a picture that should become clear with future PSP orbits

    Observations of Electromagnetic Whistler Precursors at Supercritical Interplanetary Shocks

    Get PDF
    We present observations of electromagnetic precursor waves, identified as whistler mode waves, at supercritical interplanetary shocks using the Wind search coil magnetometer. The precursors propagate obliquely with respect to the local magnetic field, shock normal vector, solar wind velocity, and they are not phase standing structures. All are right-hand polarized with respect to the magnetic field (spacecraft frame), and all but one are right-hand polarized with respect to the shock normal vector in the normal incidence frame. They have rest frame frequencies f(sub ci) < f much < f(sub ce) and wave numbers 0.02 approx < k rho (sub ce) approx <. 5.0. Particle distributions show signatures of specularly reflected gyrating ions, which may be a source of free energy for the observed modes. In one event, we simultaneously observe perpendicular ion heating and parallel electron acceleration, consistent with wave heating/acceleration due to these waves. Al though the precursors can have delta B/B(sub o) as large as 2, fluxgate magnetometer measurements show relatively laminar shock transitions in three of the four events
    • …
    corecore