168 research outputs found

    Polarization sensitive anisotropic structuring of silicon by ultrashort light pulses

    No full text
    Imprinting of anisotropic structures on the silicon surface by double pulse femtosecond laser irradiation is demonstrated. The origin of the polarization-induced anisotropy is explained in terms of interaction of linearly polarized second pulse with the wavelength-sized symmetric crater-shaped structure generated by the linearly polarized first pulse. A wavefront sensor is fabricated by imprinting an array of micro-craters. Polarization controlled anisotropy of the structures can be also explored for data storage applications

    Femtosecond laser nanostructuring for high-topological charge vortex tweezers with continuously tunable orbital angular momentum

    No full text
    It is well known that the light carries linear and angular momentum that can be transferred to the irradiated objects. Angular momentum of the beam is comprised of spin angular momentum (SAM) and orbital angular momentum (OAM). SAM is associated to the beam's polarization and is always intrinsic. OAM comes from the azimuthal phase variations of the beam and can be both extrinsic and intrinsic. The beam with helical phase phi = l.Phi, where phi is phase, Phi is polar angle and l is positive or negative integer number, possesses well-defined OAM with l.h [1]. Such beams are often referred to as optical vortices and are exploited in optical tweezer experiments enabling the rotation of trapped particles. Changing the wavefront's helicity, also the geometry of the beam is changed. The higher is |l|, the larger is the diameter of the beam. In order to change the total angular momentum of the beam, either the shape of the beam or the photon density has to be changed. As a result, the experiments which require fixed beam size and intensity are limited to fixed OAM. Recently, we implemented optical tweezers with tunable angular momentum, there OAM could be changed from -1 to 1 by controlling ellipticity of the incident laser beam. Here we extend this technology and demonstrate the generation of optical vortices of high topological charge up to 100 (Fig. 1(a)-(i)) using femtosecond laser written polarization converters (the S-waveplate) [2]

    Engineering anisotropy in glass with ultrafast laser assisted nanostructuring

    No full text
    Recent applications of femtosecond laser assisted self-assembled nanostructures will be overviewed. Specifically, polarization sensitive optical elements and 5-dimensional optical data storage with practically unlimited life-time will be demonstrated and discussed

    Void-nanograting transition by ultrashort laser pulse irradiation in silica glass

    No full text
    The structural evolution from void modification to self-assembled nanogratings in fused silica is observed for moderate (NA > 0.4) focusing conditions. Void formation, appears before the geometrical focus after the initial few pulses and after subsequent irradiation, nanogratings gradually occur at the top of the induced structures. Nonlinear Schrödinger equation based simulations are conducted to simulate the laser fluence, intensity and electron density in the regions of modification. Comparing the experiment with simulations, the voids form due to cavitation in the regions where electron density exceeds 1020 cm-3 but is below critical. In this scenario, the energy absorption is insufficient to reach the critical electron density that was once assumed to occur in the regime of void formation and nanogratings, shedding light on the potential formation mechanism of nanogratings

    Tm-doped fibre laser with radially-polarized output beam at 2 µm

    No full text
    Direct excitation of the radially-polarized TM01 mode in a caldding-pumped Tm fibre laser using a novel mode selection technique is reported. The laser yielded 6.4W of output at 1970nm for 27.6W of absorbed pump power

    Magnetic field sensor based on multi-port microcoil resonator

    No full text
    A multi-port microcoil resonator magnetic field sensor based on a microfiber coupler coil resonator (MMCR) is presented. The microfiber coupler coil is fabricated by coiling a four-port microfiber coupler with a uniform waist region around a low index support rod. The MMCR is embedded in a low refractive index polymer to increase the robustness and operation stability. The enhanced sensor response to the magnetic field is ascribed to the diverse MMCR response to the light polarization state. The MMCR magnetic field sensor is compact and low cost, and exhibits a magnetic field sensitivity of 37.09 dB/T with an estimated minimum detection limit (DL) of ~ 27 µT

    Suspended-core microstructured polymer optical fibers and potential applications in sensing

    Get PDF
    The study of the fabrication, material selection, and properties of microstructured polymer optical fibers (MPOFs) has long attracted great interest. This ever-increasing interest is due to their wide range of applications, mainly in sensing, including temperature, pressure, chemical, and biological species. This manuscript reviews the manufacturing of MPOFs, including the most recent single-step process involving extrusion from a modified 3D printer. MPOFs sensing applications are then discussed, with a stress on the benefit of using polymers

    Visible luminescence from hydrogenated amorphous silicon modified by femtosecond laser radiation

    No full text
    Visible luminescence is observed from the composite of SiO2 with embedded silicon nanocrystallites produced by femtosecond laser irradiation of hydrogenated amorphous silicon (a-Si:H) film in air. The photoluminescence originates from the defect states at the interface between silicon crystallites and SiO2 matrix. The method could be used for fabrication of luminescent layers to increase energy conversion of a-Si:H solar cells

    Compact nano-void spectrometer based on a stable engineered scattering system

    Get PDF
    Random scattering of light in disordered media can be used for highly-sensitive speckle-based wavemeters and spectrometers. However, the multiple scattering events that fold long optical paths within a compact space also make such devices exceedingly sensitive to vibrations and small disturbances to the disordered media. Here, we show how scattering can be engineered so that it can be used for a compact computational spectrometer that is largely insensitive to environmental factors. We designed and fabricated a three-dimensional pseudo-random nano-void pattern with 62% scattering efficiency. The controlled amount of multiple scattering ensured a sufficiently long optical path for the target resolution of 100 pm, with optimal long-term stability. The 200 μm-thick scattering silica substrate was integrated in a compact assembly with a low-cost camera sensor. The target resolution was achieved for full spectrum measurements while single wavelengths could be determined with 50 pm resolution. Such tailored scatterers can improve the trade-off between cost, size, stability, and spectral resolution in computational spectrometers
    corecore