11 research outputs found

    FIREBall-2: advancing TRL while doing proof-of-concept astrophysics on a suborbital platform

    Get PDF
    Here we discuss advances in UV technology over the last decade, with an emphasis on photon counting, low noise, high efficiency detectors in sub-orbital programs. We focus on the use of innovative UV detectors in a NASA astrophysics balloon telescope, FIREBall-2, which successfully flew in the Fall of 2018. The FIREBall-2 telescope is designed to make observations of distant galaxies to understand more about how they evolve by looking for diffuse hydrogen in the galactic halo. The payload utilizes a 1.0-meter class telescope with an ultraviolet multi-object spectrograph and is a joint collaboration between Caltech, JPL, LAM, CNES, Columbia, the University of Arizona, and NASA. The improved detector technology that was tested on FIREBall-2 can be applied to any UV mission. We discuss the results of the flight and detector performance. We will also discuss the utility of sub-orbital platforms (both balloon payloads and rockets) for testing new technologies and proof-of-concept scientific ideas

    FIREBall-2: advancing TRL while doing proof-of-concept astrophysics on a suborbital platform

    Get PDF
    Here we discuss advances in UV technology over the last decade, with an emphasis on photon counting, low noise, high efficiency detectors in sub-orbital programs. We focus on the use of innovative UV detectors in a NASA astrophysics balloon telescope, FIREBall-2, which successfully flew in the Fall of 2018. The FIREBall-2 telescope is designed to make observations of distant galaxies to understand more about how they evolve by looking for diffuse hydrogen in the galactic halo. The payload utilizes a 1.0-meter class telescope with an ultraviolet multi-object spectrograph and is a joint collaboration between Caltech, JPL, LAM, CNES, Columbia, the University of Arizona, and NASA. The improved detector technology that was tested on FIREBall-2 can be applied to any UV mission. We discuss the results of the flight and detector performance. We will also discuss the utility of sub-orbital platforms (both balloon payloads and rockets) for testing new technologies and proof-of-concept scientific ideas

    The Keck Cosmic Web Imager Integral Field Spectrograph

    Get PDF
    We report on the design and performance of the Keck Cosmic Web Imager (KCWI), a general purpose optical integral field spectrograph that has been installed at the Nasmyth port of the 10 m Keck II telescope on Maunakea, Hawaii. The novel design provides blue-optimized seeing-limited imaging from 350–560 nm with configurable spectral resolution from 1000–20,000 in a field of view up to 20'' × 33''. Selectable volume phase holographic (VPH) gratings and high-performance dielectric, multilayer silver, and enhanced-aluminum coatings provide end-to-end peak efficiency in excess of 45% while accommodating the future addition of a red channel that will extend wavelength coverage to 1 micron. KCWI takes full advantage of the excellent seeing and dark sky above Maunakea with an available nod-and-shuffle observing mode. The instrument is optimized for observations of faint, diffuse objects such as the intergalactic medium or cosmic web. In this paper, a detailed description of the instrument design is provided with measured performance results from the laboratory test program and 10 nights of on-sky commissioning during the spring of 2017. The KCWI team is lead by Caltech and JPL (project management, design, and implementation) in partnership with the University of California at Santa Cruz (camera optical and mechanical design) and the W. M. Keck Observatory (observatory interfaces)

    FIREBall-2: advancing TRL while doing proof-of-concept astrophysics on a suborbital platform

    Full text link
    Here we discuss advances in UV technology over the last decade, with an emphasis on photon counting, low noise, high efficiency detectors in sub-orbital programs. We focus on the use of innovative UV detectors in a NASA astrophysics balloon telescope, FIREBall-2, which successfully flew in the Fall of 2018. The FIREBall-2 telescope is designed to make observations of distant galaxies to understand more about how they evolve by looking for diffuse hydrogen in the galactic halo. The payload utilizes a 1.0-meter class telescope with an ultraviolet multi-object spectrograph and is a joint collaboration between Caltech, JPL, LAM, CNES, Columbia, the University of Arizona, and NASA. The improved detector technology that was tested on FIREBall-2 can be applied to any UV mission. We discuss the results of the flight and detector performance. We will also discuss the utility of sub-orbital platforms (both balloon payloads and rockets) for testing new technologies and proof-of-concept scientific ideasComment: Submitted to the Proceedings of SPIE, Defense + Commercial Sensing (SI19

    FIREBall-2: The Faint Intergalactic Medium Redshifted Emission Balloon Telescope

    Full text link
    The Faint Intergalactic Medium Redshifted Emission Balloon (FIREBall) is a mission designed to observe faint emission from the circumgalactic medium of moderate redshift (z~0.7) galaxies for the first time. FIREBall observes a component of galaxies that plays a key role in how galaxies form and evolve, likely contains a significant amount of baryons, and has only recently been observed at higher redshifts in the visible. Here we report on the 2018 flight of the FIREBall-2 Balloon telescope, which occurred on September 22nd, 2018 from Fort Sumner, New Mexico. The flight was the culmination of a complete redesign of the spectrograph from the original FIREBall fiber-fed IFU to a wide-field multi-object spectrograph. The flight was terminated early due to a hole in the balloon, and our original science objectives were not achieved. The overall sensitivity of the instrument and telescope was 90,000 LU, due primarily to increased noise from stray light. We discuss the design of the FIREBall-2 spectrograph, modifications from the original FIREBall payload, and provide an overview of the performance of all systems. We were able to successfully flight test a new pointing control system, a UV-optimized, delta-doped and coated EMCCD, and an aspheric grating. The FIREBall-2 team is rebuilding the payload for another flight attempt in the Fall of 2021, delayed from 2020 due to COVID-19.Comment: 23 Pages, 14 Figures, Accepted for Publication in Ap

    FIREBall-2: advancing TRL while doing proof-of-concept astrophysics on a suborbital platform

    No full text
    Here we discuss advances in UV technology over the last decade, with an emphasis on photon counting, low noise, high efficiency detectors in sub-orbital programs. We focus on the use of innovative UV detectors in a NASA astrophysics balloon telescope, FIREBall-2, which successfully flew in the Fall of 2018. The FIREBall-2 telescope is designed to make observations of distant galaxies to understand more about how they evolve by looking for diffuse hydrogen in the galactic halo. The payload utilizes a 1.0-meter class telescope with an ultraviolet multi-object spectrograph and is a joint collaboration between Caltech, JPL, LAM, CNES, Columbia, the University of Arizona, and NASA. The improved detector technology that was tested on FIREBall-2 can be applied to any UV mission. We discuss the results of the flight and detector performance. We will also discuss the utility of sub-orbital platforms (both balloon payloads and rockets) for testing new technologies and proof-of-concept scientific ideas.APRA program; CNESCentre National D'etudes Spatiales; CNRSCentre National de la Recherche Scientifique (CNRS); Nancy Grace Roman Fellowship; NSF AAPFNational Science Foundation (NSF)NSF - Directorate for Mathematical & Physical Sciences (MPS); CaltechThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
    corecore