1,066 research outputs found

    Calabi-Yau 3-folds from 2-folds

    Get PDF
    We consider type IIA string theory on a Calabi-Yau 2-fold with D6-branes wrapping 2-cycles in the 2-fold. We find a complete set of conditions on the supergravity solution for any given wrapped brane configuration in terms of SU(2) structures. We reduce the problem of finding a supergravity solution for the wrapped branes to finding a harmonic function on R×\timesCY2_2. We then lift this solution to 11-dimensions as a product of R(4.1)^{(4.1)} and a Calabi-Yau 3-fold. We show how the metric on the 3-fold is determined in terms of the wrapped brane solution. We write down the distinguished (3,0) form and the K{\"a}hler form of the 3-fold in terms of structures defined on the base 2-d complex manifold. We discuss the topology of the 3-fold in terms of the D6-branes and the underlying 2-fold. We show that in addition to the non-trivial cycles inherited from the underlying 2-fold there are N−1N-1 new 2-cycles. We construct closed (1,1) forms corresponding to these new cycles. We also display some explicit examples. One of our examples is that of D6-branes wrapping the 2-cycle in an A1_1 ALE space, the resulting 3-fold has h(1,1)=Nh^{(1,1)}=N, where NN is the number of D6-branes.Comment: 30 page

    GFINDer: Genome Function INtegrated Discoverer through dynamic annotation, statistical analysis, and mining

    Get PDF
    Statisticalandclustering analyses ofgeneexpression results from high-density microarray experiments produce lists of hundreds of genes regulated differentially, or with particular expression profiles, in the conditions under study. Independent of the microarray platforms and analysis methods used, these lists must be biologically interpreted to gain a better knowledge of the patho-physiological phenomena involved. To this end, numerous biological annotations are available within heterogeneous and widely distributed databases. Although several tools have been developed for annotating lists of genes, most of them do not give methods for evaluating the relevance of the annotations provided, or for estimating the functional bias introduced by the gene set on the array used to identify the gene list considered. We developed Genome Functional INtegrated Discoverer (GFINDer ), a web server able to automatically provide large-scale lists of user-classified genes with functional profiles biologically characterizing the different gene classes in the list. GFINDer automatically retrieves annotations of several functional categories from different sources, identifies the categories enriched in each class of a user-classified gene list and calculates statistical significance values for each category. Moreover, GFINDer enables the functional classification of genes according to mined functional categories and the statistical analysis is of the classifications obtained, aiding better interpretationof microarray experiment results. GFINDer is available online at http://www.medinfopoli.polimi.it/GFINDer/

    The extreme function theory for damage detection: An application to civil and aerospace structures

    Get PDF
    Any damaged condition is a rare occurrence for mechanical systems, as it is very unlikely to be observed. Thus, it represents an extreme deviation from the median of its probability distribu-tion. It is, therefore, necessary to apply proper statistical solutions, i.e., Rare Event Modelling (REM). The classic tool for this aim is the Extreme Value Theory (EVT), which deals with uni-or multivariate scalar values. The Extreme Function Theory (EFT), on the other hand, is defined by enlarging the fundamental EVT concepts to whole functions. When combined with Gaussian Process Regres-sion (GPR), the EFT is perfectly suited for mode shape-based outlier detection. In fact, it is possible to investigate the structure’s normal modes as a whole rather than focusing on their constituent data points, with quantifiable advantages. This provides a useful tool for Structural Health Monitoring, especially to reduce false alarms. This recently proposed methodology is here tested and validated both numerically and experimentally for different examples coming from Civil and Aerospace Engineering applications. One-dimensional beamlike elements with several boundary conditions are considered, as well as a two-dimensional plate-like spar and a frame structure

    From ten to four and back again: how to generalize the geometry

    Full text link
    We discuss the four-dimensional N=1 effective approach in the study of warped type II flux compactifications with SU(3)x SU(3)-structure to AdS_4 or flat Minkowski space-time. The non-trivial warping makes it natural to use a supergravity formulation invariant under local complexified Weyl transformations. We obtain the classical superpotential from a standard argument involving domain walls and generalized calibrations and show how the resulting F-flatness and D-flatness equations exactly reproduce the full ten-dimensional supersymmetry equations. Furthermore, we consider the effect of non-perturbative corrections to this superpotential arising from gaugino condensation or Euclidean D-brane instantons. For the latter we derive the supersymmetry conditions in N=1 flux vacua in full generality. We find that the non-perturbative corrections induce a quantum deformation of the internal generalized geometry. Smeared instantons allow to understand KKLT-like AdS vacua from a ten-dimensional point of view. On the other hand, non-smeared instantons in IIB warped Calabi-Yau compactifications 'destabilize' the Calabi-Yau complex structure into a genuine generalized complex one. This deformation gives a geometrical explanation of the non-trivial superpotential for mobile D3-branes induced by the non-perturbative corrections.Comment: LaTeX, 47 pages, v2, references, hyperref added, v3, correcting small inaccuracies in eqs. (2.6a) and (5.16

    Dirac equation for the supermembrane in a background with fluxes from a component description of the D=11 supergravity-supermembrane interacting system

    Full text link
    We present a simple derivation of the 'Dirac' equation for the supermembrane fermionic field in a D=11 supergravity background with fluxes by using a complete but gauge-fixed description of the supergravity-supermembrane interacting system previously developed. We also discuss the contributions linear in the supermembrane fermions -the Goldstone fields for the local supersymmetry spontaneously broken by the superbrane- to the field equations of the supergravity-supermembrane interacting system. The approach could also be applied to more complicated dynamical systems such as those involving the M5-brane and the D=10 Dirichlet branes.Comment: 1+22 pages, JHEP style. v2: cosmetic changes and references added to conform to the JHEP published versio

    Noncommutative Einstein-AdS Gravity in three Dimensions

    Get PDF
    We present a Lorentzian version of three-dimensional noncommutative Einstein-AdS gravity by making use of the Chern-Simons formulation of pure gravity in 2+1 dimensions. The deformed action contains a real, symmetric metric and a real, antisymmetric tensor that vanishes in the commutative limit. These fields are coupled to two abelian gauge fields. We find that this theory of gravity is invariant under a class of transformations that reduce to standard diffeomorphisms once the noncommutativity parameter is set to zero.Comment: 11 pages, LaTeX, minor errors corrected, references adde

    Open String Wavefunctions in Warped Compactifications

    Full text link
    We analyze the wavefunctions for open strings in warped compactifications, and compute the warped Kahler potential for the light modes of a probe D-brane. This analysis not only applies to the dynamics of D-branes in warped backgrounds, but also allows to deduce warping corrections to the closed string Kahler metrics via their couplings to open strings. We consider in particular the spectrum of D7-branes in warped Calabi-Yau orientifolds, which provide a string theory realizations of the Randall-Sundrum scenario. We find that certain background fluxes, necessary in the presence of warping, couple to the fermionic wavefunctions and qualitatively change their behavior. This modified dependence of the wavefunctions are needed for consistency with supersymmetry, though it is present in non-supersymmetric vacua as well. We discuss the deviations of our setup from the RS scenario and, as an application of our results, compute the warping corrections to Yukawa couplings in a simple model. Our analysis is performed both with and without the presence of D-brane world-volume flux, as well as for the case of backgrounds with varying dilaton.Comment: 52 pages, refs. added, minor correction

    The energy and stability of D-term strings

    Get PDF
    Cosmic strings derived from string theory, supergravity or any theory of choice should be stable if we hope to observe them. In this paper we consider D-term strings in D=4, N=1 supergravity with a constant Fayet-Iliopoulos term. We show that the positive deficit angle supersymmetric D-term string is non-perturbatively stable by using standard Witten-Nester techniques to prove a positive energy theorem. Particular attention is paid to the negative deficit angle D-term string, which is known to violate the dominant energy condition. Within the class of string solutions we consider, this violation implies that the negative deficit angle D-term string must have a naked pathology and therefore the positive energy theorem we prove does not apply to it. As an interesting aside, we show that the Witten-Nester charge calculates the total gravitational energy of the D-term string without the need for a cut-off, which may not have been expected.Comment: 18 pages. v2: minor changes and references adde

    Deformations of calibrated D-branes in flux generalized complex manifolds

    Get PDF
    We study massless deformations of generalized calibrated cycles, which describe, in the language of generalized complex geometry, supersymmetric D-branes in N=1 supersymmetric compactifications with fluxes. We find that the deformations are classified by the first cohomology group of a Lie algebroid canonically associated to the generalized calibrated cycle, seen as a generalized complex submanifold with respect to the integrable generalized complex structure of the bulk. We provide examples in the SU(3) structure case and in a `genuine' generalized complex structure case. We discuss cases of lifting of massless modes due to world-volume fluxes, background fluxes and a generalized complex structure that changes type.Comment: 52 pages, added references, added comment on ellipticity in appendix B, made minor changes according to instructions referee JHE

    Perturbing gauge/gravity duals by a Romans mass

    Full text link
    We show how to produce algorithmically gravity solutions in massive IIA (as infinitesimal first order perturbations in the Romans mass parameter) dual to assigned conformal field theories. We illustrate the procedure on a family of Chern--Simons--matter conformal field theories that we recently obtained from the N=6 theory by waiving the condition that the levels sum up to zero.Comment: 30 page
    • 

    corecore