47 research outputs found

    The Eclipsing δ\delta Scuti Star EPIC 245932119

    Full text link
    We present the physical properties of EPIC 245932119 (KpK_{\rm p} = ++9.82) exhibiting both eclipses and pulsations from the {\it K{\rm 2}} photometry. The binary modeling indicates that the eclipsing system is in detached or semi-detached configurations with a mass ratio of 0.283 or 0.245, respectively, and that its light-curve parameters are almost unaffected by pulsations. Multiple frequency analyses were performed for the light residuals in the outside-primary eclipsing phase after subtracting the binarity effects from the observed data. We detected 35 frequencies with signal to noise amplitude ratios larger than 4.0 in two regions of 0.62-6.28 day1^{-1} and 19.36-24.07 day1^{-1}. Among these, it is possible that some high signals close to the Nyquist limit fNyf_{\rm Ny} may be reflections of real pulsation frequencies (2fNyfif_{\rm Ny}-f_i). All frequencies (f8f_8, f9f_9, f14f_{14}, f18f_{18}, f24f_{24}, f32f_{32}) in the lower frequency region are orbital harmonics, and three high frequencies (f19f_{19}, f20f_{20}, f22f_{22}) appear to be sidelobes split from the main frequency of f1f_1 = 22.77503 day1^{-1}. Most of them are thought to be alias effects caused by the orbital frequency. For the 26 other frequencies, the pulsation periods and pulsation constants are in the ranges of 0.041-0.052 days and 0.013-0.016 days, respectively. These values and the position in the Hertzsprung-Russell diagram reveal that the primary component is a δ\delta Sct pulsator. The observational properties of EPIC 245932119 are in good agreement with those for eclipsing binaries with δ\delta Sct-type pulsating components.Comment: 17 pages, including 5 figures and 3 tables, accepted for publication in A

    Flares in Open Clusters with K2. II. Pleiades, Hyades, Praesepe, Ruprecht 147, and M67

    Full text link
    Flares, energetic eruptions on the surfaces of stars, are an unmistakable manifestation of magnetically driven emission. Their occurrence rates and energy distributions trace stellar characteristics such as mass and age. But before flares can be used to constrain stellar properties, the flaring-age-mass relation requires proper calibration. This work sets out to quantify flaring activity of independently age-dated main sequence stars for a broad range of spectral types using optical light curves obtained by the Kepler satellite. Drawing from the complete K2 archive, we searched 3435 80\sim 80 day long light curves of 2111 open cluster members for flares using the open-source software packages K2SC to remove instrumental and astrophysical variability from K2 light curves, and AltaiPony to search and characterize the flare candidates. We confirmed a total of 3844 flares on high probability open cluster members with ages from zero age main sequence (Pleiades) to 3.6 Gyr (M67). We extended the mass range probed in the first study of this series to span from Sun-like stars to mid-M dwarfs. We added the Hyades (690 Myr) to the sample as a comparison cluster to Praesepe (750 Myr), the 2.6 Gyr old Ruprecht 147, and several hundred light curves from the late K2 Campaigns in the remaining clusters. The flare energy distribution was similar in the entire parameter space, following a power law relation with exponent α1.842.39\alpha\approx 1.84-2.39. The flaring rates declined with age, and declined faster for higher mass stars. We found evidence that a rapid decline in flaring activity occurred in M1-M2 dwarfs around Hyades/Praesepe age, when these stars spun down to rotation periods of about 10 days, while higher mass stars had already transitioned to lower flaring rates, and lower mass stars still resided in the saturated activity regime. (abridged)Comment: 27 pages, 13 figures. Accepted to A&

    Newly identified compact hierarchical triple system candidates using Gaia DR3

    Full text link
    Aims. We introduce a novel way to identify new compact hierarchical triple stars by exploiting the huge potential of Gaia DR3 and also its future data releases. We aim to increase the current number of compact hierarchical triples significantly. Methods. We utilize several eclipsing binary catalogs from different sky surveys totaling more than 1 million targets for which we search for Gaia DR3 Non-single Star orbital solutions with periods substantially longer than the eclipsing periods of the binaries. Those solutions in most cases should belong to outer orbits of tertiary stars in those systems. We also try to validate some of our best-suited candidates using TESS eclipse timing variations. Results. We find 403 objects with suitable Gaia orbital solutions of which 27 are already known triple systems. This makes 376 newly identified hierarchical triple system candidates in our sample. We analyze the cumulative probability distribution of the outer orbit eccentricities and find that it is very similar to the ones found by earlier studies based on the observations of the Kepler and OGLE missions. We found measurable non-linear eclipse timing variations or third-body eclipses in the TESS data for 192 objects which we also consider to be confirmed candidates. Out of these, we construct analytical light-travel time effect models for the eclipse timing variations of 22 objects with well-sampled TESS observations. We compare the outer orbital parameters from our solutions with the ones from the Gaia solutions and find that the most reliable orbital parameter is the orbital period, while the values of the other parameters should be used with caution.Comment: 18 pages, 9 figures, 6 tables, Accepted for publication in Astronomy & Astrophysic

    Five Planets Transiting a Ninth Magnitude Star

    Get PDF
    The Kepler mission has revealed a great diversity of planetary systems and architectures, but most of the planets discovered by Kepler orbit faint stars. Using new data from the K2 mission, we present the discovery of a five planet system transiting a bright (V = 8.9, K = 7.7) star called HIP 41378. HIP 41378 is a slightly metal-poor late F-type star with moderate rotation (v sin(i) = 7 km/s) and lies at a distance of 116 +/- 18 from Earth. We find that HIP 41378 hosts two sub-Neptune sized planets orbiting 3.5% outside a 2:1 period commensurability in 15.6 and 31.7 day orbits. In addition, we detect three planets which each transit once during the 75 days spanned by K2 observations. One planet is Neptune sized in a likely ~160 day orbit, one is sub-Saturn sized likely in a ~130 day orbit, and one is a Jupiter sized planet in a likely ~1 year orbit. We show that these estimates for the orbital periods can be made more precise by taking into account dynamical stability considerations. We also calculate the distribution of stellar reflex velocities expected for this system, and show that it provides a good target for future radial velocity observations. If a precise orbital period can be determined for the outer Jovian planet through future observations, it will be an excellent candidate for follow-up transit observations to study its atmosphere and measure its oblateness.Comment: Accepted by ApJL. 12 pages, 6 figures, 2 table

    K2-138 g: Spitzer Spots a Sixth Planet for the Citizen Science System

    Get PDF
    K2 greatly extended Kepler's ability to find new planets, but it was typically limited to identifying transiting planets with orbital periods below 40 days. While analyzing K2 data through the Exoplanet Explorers project, citizen scientists helped discover one super-Earth and four sub-Neptune sized planets in the relatively bright (V = 12.21, K = 10.3) K2-138 system, all which orbit near 3:2 mean-motion resonances. The K2 light curve showed two additional transit events consistent with a sixth planet. Using Spitzer photometry, we validate the sixth planet's orbital period of 41.966 ± 0.006 days and measure a radius of 3.44_(-0.31)^(+0.32) R_⊕, solidifying K2-138 as the K2 system with the most currently known planets. There is a sizeable gap between the outer two planets, since the fifth planet in the system, K2-138 f, orbits at 12.76 days. We explore the possibility of additional nontransiting planets in the gap between f and g. Due to the relative brightness of the K2-138 host star, and the near resonance of the inner planets, K2-138 could be a key benchmark system for both radial velocity and transit-timing variation mass measurements, and indeed radial velocity masses for the inner four planets have already been obtained. With its five sub-Neptunes and one super-Earth, the K2-138 system provides a unique test bed for comparative atmospheric studies of warm to temperate planets of similar size, dynamical studies of near-resonant planets, and models of planet formation and migration

    Planet Hunters X: Searching for Nearby Neighbors of 75 Planet and Eclipsing Binary Candidates from the K2 Kepler Extended Mission

    Get PDF
    We present high-resolution observations of a sample of 75 K2 targets from Campaigns 1-3 using speckle interferometry on the Southern Astrophysical Research (SOAR) telescope and adaptive optics (AO) imaging at the Keck II telescope. The median SOAR II-band and Keck KsK_s-band detection limits at 1" were ΔmI=4.4\Delta m_{I}=4.4~mag and ΔmKs=6.1\Delta m_{K_s}=6.1~mag, respectively. This sample includes 37 stars likely to host planets, 32 targets likely to be eclipsing binaries (EBs), and 6 other targets previously labeled as likely planetary false positives. We find nine likely physically bound companion stars within 3" of three candidate transiting exoplanet host stars and six likely EBs. Six of the nine detected companions are new discoveries; one of the six, EPIC 206061524, is associated with a planet candidate. Among the EB candidates, companions were only found near the shortest period ones (P<3P<3 days), which is in line with previous results showing high multiplicity near short-period binary stars. This high-resolution data, including both the detected companions and the limits on potential unseen companions, will be useful in future planet vetting and stellar multiplicity rate studies for planets and binaries.Comment: Accepted in A

    A Population of Dipper Stars from the Transiting Exoplanet Survey Satellite Mission

    Full text link
    Dipper stars are a classification of young stellar objects that exhibit dimming variability in their light curves, dropping in brightness by 10-50%, likely induced by occultations due to circumstellar disk material. This variability can be periodic, quasi-periodic, or aperiodic. Dipper stars have been discovered in young stellar associations via ground-based and space-based photometric surveys. We present the detection and characterization of the largest collection of dipper stars to date: 293 dipper stars, including 234 new dipper candidates. We have produced a catalog of these targets, which also includes young stellar variables that exhibit predominately bursting-like variability and symmetric variability (equal parts bursting and dipping). The total number of catalog sources is 414. These variable sources were found in a visual survey of TESS light curves, where dipping-like variability was observed. We found a typical age among our dipper sources of <5 Myr, with the age distribution peaking at ~2 Myr, and a tail of the distribution extending to ages older than 20 Myr. Regardless of the age, our dipper candidates tend to exhibit infrared excess, which is indicative of the presence of disks. TESS is now observing the ecliptic plane, which is rich in young stellar associations, so we anticipate many more discoveries in the TESS dataset. A larger sample of dipper stars would enhance the census statistics of light curve morphologies and dipper ages.Comment: 19 pages, 11 figures, 1 table (included in latex source), accepted for publication in ApJ

    Planet Hunters. VIII. Characterization of 41 Long-Period Exoplanet Candidates from Kepler Archival Data

    Get PDF
    The census of exoplanets is incomplete for orbital distances larger than 1 AU. Here, we present 41 long-period planet candidates in 38 systems identified by Planet Hunters based on Kepler archival data (Q0-Q17). Among them, 17 exhibit only one transit, 14 have two visible transits and 10 have more than three visible transits. For planet candidates with only one visible transit, we estimate their orbital periods based on transit duration and host star properties. The majority of the planet candidates in this work (75%) have orbital periods that correspond to distances of 1-3 AU from their host stars. We conduct follow-up imaging and spectroscopic observations to validate and characterize planet host stars. In total, we obtain adaptive optics images for 33 stars to search for possible blending sources. Six stars have stellar companions within 4". We obtain high-resolution spectra for 6 stars to determine their physical properties. Stellar properties for other stars are obtained from the NASA Exoplanet Archive and the Kepler Stellar Catalog by Huber et al. (2014). We validate 7 planet candidates that have planet confidence over 0.997 (3-{\sigma} level). These validated planets include 3 single-transit planets (KIC-3558849b, KIC-5951458b, and KIC-8540376c), 3 planets with double transits (KIC-8540376b, KIC-9663113b, and KIC-10525077b), and 1 planet with 4 transits (KIC-5437945b). This work provides assessment regarding the existence of planets at wide separations and the associated false positive rate for transiting observation (17%-33%). More than half of the long-period planets with at least three transits in this paper exhibit transit timing variations up to 41 hours, which suggest additional components that dynamically interact with the transiting planet candidates. The nature of these components can be determined by follow-up radial velocity and transit observations.Comment: Published on ApJ, 815, 127 Notations of validated planets are changed in accordance with naming convention of NASA Exoplanet Archiv

    101 Eclipsing Quadruple Star Candidates Discovered in TESS Full Frame Images

    Full text link
    We present our second catalog of quadruple star candidates, containing 101 systems discovered in TESS Full-Frame Image data. The targets were initially detected as eclipsing binary stars with the help of supervised machine learning methods applied to sectors Sectors 1 through 54. A dedicated team of citizen scientists subsequently identified through visual inspection two sets of eclipses following two different periods. All 101 systems presented here pass comprehensive photocenter motion tests confirming that both sets of eclipses originate from the target star. Some of the systems exhibit prominent eclipse time variations suggesting dynamical interactions between the two component binary stars. One target is an eclipsing quintuple candidate with a (2+1)+2 hierarchical configuration, such that the (2+1) subsystem produces eclipses on the triple orbit as well. Another has recently been confirmed as the second shortest period quadruple reported to date. This catalog provides ephemerides, eclipse depths and durations, sample statistics, and highlights potentially interesting targets for future studies.Comment: 38 pages, 21 figures, 2 tables. Table with targets available online at MNRA

    Confirmation and Characterization of the Eccentric, Warm Jupiter TIC 393818343 b with a Network of Citizen Scientists

    Get PDF
    NASA’s Transiting Exoplanet Survey Satellite (TESS) has identified over 7000 candidate exoplanets via the transit method, with gas giants among the most readily detected due to their large radii. Even so, long intervals between TESS observations for much of the sky lead to candidates for which only a single transit is detected in one TESS sector, leaving those candidate exoplanets with unconstrained orbital periods. Here, we confirm the planetary nature of TIC 393818343 b, originally identified via a single TESS transit, using radial velocity data and ground-based photometric observations from citizen scientists with the Unistellar Network and Exoplanet Watch. We determine a period of P = 16.24921 −0.00011+0.00010 days, a mass M P = 4.34 ± 0.15 M J, and semimajor axis a = 0.1291 −0.0022+0.0021 au, placing TIC 393818343 b in the “warm Jupiter” population of exoplanets. With an eccentricity e = 0.6058 ± 0.0023, TIC 393818343 b is the most eccentric warm Jupiter to be discovered by TESS orbiting less than 0.15 au from its host star and therefore an excellent candidate for follow-up, as it may inform our future understanding of how hot and warm Jupiter populations are linked
    corecore