14 research outputs found

    Protocol for engineering and validating a synthetic mitochondrial intermembrane bridge in mammalian cells

    Get PDF
    Membrane contact sites are recognized as critical means of intercompartmental communication. Here, we describe a protocol for engineering and validating a synthetic bridge between the inner and outer mitochondrial membranes to support functioning of the endogenous mitochondrial contact site and cristae organizing system (MICOS). A chimeric protein,MitoT, is stably expressed in cultured mammalian cells to bridge themitochondrial membranes. This approach can be a valuable tool to study the function of the MICOS complex and associated proteins

    Depletion of mitochondrial protease OMA1 alters proliferative properties and promotes metastatic growth of breast cancer cells

    Get PDF
    Metastatic competence of cancer cells is influenced by many factors including metabolic alterations and changes in mitochondrial biogenesis and protein homeostasis. While it is generally accepted that mitochondria play important roles in tumorigenesis, the respective molecular events that regulate aberrant cancer cell proliferation remain to be clarified. Therefore, understanding the mechanisms underlying the role of mitochondria in cancer progression has potential implications in the development of new therapeutic strategies. We show that low expression of mitochondrial quality control protease OMA1 correlates with poor overall survival in breast cancer patients. Silencing OMA1 in vitro in patientderived metastatic breast cancer cells isolated from the metastatic pleural effusion and atypical ductal hyperplasia mammary tumor specimens (21MT-1 and 21PT) enhances the formation of filopodia, increases cell proliferation (Ki67 expression), and induces epithelial-mesenchymal transition (EMT). Mechanistically, loss of OMA1 results in alterations in the mitochondrial protein homeostasis, as reflected by enhanced expression of canonic mitochondrial unfolded protein response genes. These changes significantly increase migratory properties in metastatic breast cancer cells, indicating that OMA1 plays a critical role in suppressing metastatic competence of breast tumors. Interestingly, these results were not observed in OMA1-depleted non-tumorigenic MCF10A mammary epithelial cells. This newly identified reduced activity/levels of OMA1 provides insights into the mechanisms leading to breast cancer development, promoting malignant progression of cancer cells and unfavorable clinical outcomes, which may represent possible prognostic markers and therapeutic targets for breast cancer treatment

    Depletion of mitochondrial protease OMA1 alters proliferative properties and promotes metastatic growth of breast cancer cells

    Get PDF
    Metastatic competence of cancer cells is influenced by many factors including metabolic alterations and changes in mitochondrial biogenesis and protein homeostasis. While it is generally accepted that mitochondria play important roles in tumorigenesis, the respective molecular events that regulate aberrant cancer cell proliferation remain to be clarified. Therefore, understanding the mechanisms underlying the role of mitochondria in cancer progression has potential implications in the development of new therapeutic strategies. We show that low expression of mitochondrial quality control protease OMA1 correlates with poor overall survival in breast cancer patients. Silencing OMA1 in vitro in patientderived metastatic breast cancer cells isolated from the metastatic pleural effusion and atypical ductal hyperplasia mammary tumor specimens (21MT-1 and 21PT) enhances the formation of filopodia, increases cell proliferation (Ki67 expression), and induces epithelial-mesenchymal transition (EMT). Mechanistically, loss of OMA1 results in alterations in the mitochondrial protein homeostasis, as reflected by enhanced expression of canonic mitochondrial unfolded protein response genes. These changes significantly increase migratory properties in metastatic breast cancer cells, indicating that OMA1 plays a critical role in suppressing metastatic competence of breast tumors. Interestingly, these results were not observed in OMA1-depleted non-tumorigenic MCF10A mammary epithelial cells. This newly identified reduced activity/levels of OMA1 provides insights into the mechanisms leading to breast cancer development, promoting malignant progression of cancer cells and unfavorable clinical outcomes, which may represent possible prognostic markers and therapeutic targets for breast cancer treatment

    Beta-adrenergic agonists increase maximal output of oxidative phosphorylation in bovine satellite cells

    Get PDF
    Beta-adrenergic agonists (βAA), Ractopamine HCl (RH) and Zilpaterol HCl (ZH), are FDAapproved supplements utilized in pigs and cattle to improve growth performance, carcass weight, and longissimus muscle area (Arp et al., 2014; Lean et al., 2014). Previous studies within our group have focused on understanding molecular changes in skeletal muscle due to βAA supplementation. This work has shown that βAA supplementation increases glucose oxidation in muscle from thermoneutral and heat-stressed lambs (Barnes et al., 2019) and in rat skeletal muscle stimulated with ZH (Cadaret et al., 2017). Skeletal muscle transcriptomics of lambs supplemented ZH revealed upregulation of genes associated with the callipyge phenotype of sheep (Yu et al., 2018) as well as the upregulation of mitochondrial solute carrier SLC25A25 (Kubik et al., 2018). SLC25A25 is a Ca2+ sensitive ATP-Mg2+/Pi inner mitochondrial membrane solute transporter. Due to the role of the mitochondria in metabolism and the results of prior transcriptomics studies, the objective of this study was to understand how βAA affect mitochondrial function of bovine skeletal muscle stem (i.e., satellite) cells. We hypothesized that βAA would improve efficiency and ATP production capacity of muscle stem cells by modifying mitochondrial function

    Beta-adrenergic agonists alter oxidative phosphorylation in primary myoblasts (Short Communication)

    Get PDF
    Beta-adrenergic agonists (β-AAs) are widely used supplements in beef and pork production to improve feed efficiency and increase lean muscle mass, yet little is known about the molecular mechanism by which β-AAs achieve this outcome. Our objective was to identify the influence of ractopamine HCl and zilpaterol HCl on mitochondrial respiratory activity in muscle satellite cells isolated from crossbred beef steers (N = 5), crossbred barrows (N = 2), Yorkshire-cross gilts (N = 3), and commercial weather lambs (N = 5). Real-time measurements of oxygen con­sumption rates (OCRs) were recorded using extracellular flux analyses with a Seahorse XFe24 analyzer. After basal OCR measurements were recorded, zilpaterol HCl, ractopamine HCl, or no β-AA was injected into the assay plate in three technical replicates for each cell isolate. Then, oligomycin, carbonyl cyanide-p-trifluoromethoxyphenylhydrazone, and rotenone were injected into the assay plate sequentially, each inducing a different cellular state. This allowed for the measurement of OCR at these states and for the calculation of the following measures of mitochon­drial function: basal respiration, non-mitochondrial respiration, maximal respiration, proton leak, adenosine triphosphate (ATP)-linked respiration, and spare respiratory capacity. Incubation of bovine cells with either zilpaterol HCl or ractopamine HCl increased maximal respiration (P = 0.046) and spare respiratory capacity (P = 0.035) compared with non-supplemented counterparts. No difference (P \u3e 0.05) was observed between zilpaterol HCl and ractopamine HCl for maximal respiration and spare respiratory capacity in bovine cell isolates. No measures of mitochondrial function (basal respiration, non-mitochondrial respiration, maximal respiration, proton leak, ATP-linked respiration, and spare respiratory capacity) were altered by β-AA treatment in ovine or porcine cells. These findings indicate that β-AAs in cattle may improve the efficiency of oxidative metabolism in muscle satellite cells by modifying mitochondrial respiratory activity. The lack of response by ovine and porcine cells to β-AA incubation also demonstrates differing physiological responses to β-AA across species, which helps to explain the variation in its effectiveness as a growth supplement. Lay Summary — Beta-adrenergic agonists (β-AAs) are supplemented to pigs and cattle to improve growth performance, carcass weight, and loin muscle area. Little is known about the mechanism taking place within individual cells by which β-AAs achieve this outcome. Previous work reported that β-AA supplementation improves the efficiency in which cells use glucose as an energy source and alters the expression of genes related to mitochondrial function, a key component of cellular energy production. To further our understanding of the impact of β-AA supplementation on these cellular functions, our objective was to identify the influence of two β-AAs used in livestock production, ractopamine HCl and zilpaterol HCl, on the mitochondrial respiratory activity of cells collected from the loin muscle and grown in culture. We isolated cells from cattle, pig, and sheep muscle and measured the oxygen consumption of the cells after treatment with ractopamine HCl, zilpaterol HCl, or with no supplement. We found that both ractopamine HCl and zilpaterol HCl enhance the efficiency of cellular energy production during a state of cellular stress in bovine muscle cells. There was no appreciable effect of the supplement on the energy production of pig or sheep cells. These data indicate that β-AA supplementation in cattle may increase the muscle cell energy production capacity compared with non-supplemented cells. This study also demonstrates that the efficiency of cell energy production is one plausible mechanism underlying species differences in the response to β-AA supplementation

    Sestrin2 Phosphorylation by ULK1 Induces Autophagic Degradation of Mitochondria Damaged by Copper-Induced Oxidative Stress

    Get PDF
    Selective autolysosomal degradation of damaged mitochondria, also called mitophagy, is an indispensable process for maintaining integrity and homeostasis of mitochondria. One well-established mechanism mediating selective removal of mitochondria under relatively mild mitochondria-depolarizing stress is PINK1-Parkin-mediated or ubiquitin-dependent mitophagy. However, additional mechanisms such as LC3-mediated or ubiquitin-independent mitophagy induction by heavy environmental stress exist and remain poorly understood. The present study unravels a novel role of stress-inducible protein Sestrin2 in degradation of mitochondria damaged by transition metal stress. By utilizing proteomic methods and studies in cell culture and rodent models, we identify autophagy kinase ULK1-mediated phosphorylation sites of Sestrin2 and demonstrate Sestrin2 association with mitochondria adaptor proteins in HEK293 cells. We show that Ser-73 and Ser-254 residues of Sestrin2 are phosphorylated by ULK1, and a pool of Sestrin2 is strongly associated with mitochondrial ATP5A in response to Cu-induced oxidative stress. Subsequently, this interaction promotes association with LC3-coated autolysosomes to induce degradation of mitochondria damaged by Cu-induced ROS. Treatment of cells with antioxidants or a Cu chelator significantly reduces Sestrin2 association with mitochondria. These results highlight the ULK1-Sestrin2 pathway as a novel stress-sensing mechanism that can rapidly induce autophagic degradation of mitochondria under severe heavy metal stress

    Protease OMA1 Modulates Mitochondrial Bioenergetics and Ultrastructure through Dynamic Association with MICOS Complex

    Get PDF
    Remodeling of mitochondrial ultrastructure is a complex dynamic process that is critical for a variety of mitochondrial functions and apoptosis. Although the key regulators of this process - mitochondrial contact site and cristae junction organizing system (MICOS) and GTPase Optic Atrophy 1 (OPA1) have been characterized, the mechanisms behind this regulation remain incompletely defined. Here, we found that in addition to its role in mitochondrial division, metallopeptidase OMA1 is required for maintenance of contacts between the inner and outer membranes through a dynamic association with MICOS. This association is independent of OPA1, appears to be mediated via the MIC60 MICOS subunit, and is important for stability of MICOS machinery and the inner-outer mitochondrial membrane contacts. We find that such molecular organization is required for stability of respiratory supercomplexes, optimal bioenergetic output in response to cellular insults, and apoptosis. Loss of OMA1 affects these activities; remarkably it can be partially compensated for by an artificial MICOS-emulating tether protein that bridges the inner and outer mitochondrial membranes. Our data show that OMA1-mediated support of mitochondrial ultrastructure is required for maintenance of mitochondrial architecture and bioenergetics under both basal and homeostasis-challenging conditions and suggest a previously unrecognized role for this protease in mitochondrial physiology. Advisor: Oleh Khalimonchu

    Protease OMA1 Modulates Mitochondrial Bioenergetics and Ultrastructure through Dynamic Association with MICOS Complex

    No full text
    Remodeling of mitochondrial ultrastructure is a complex dynamic process that is critical for a variety of mitochondrial functions and apoptosis. Although the key regulators of this process - mitochondrial contact site and cristae junction organizing system (MICOS) and GTPase Optic Atrophy 1 (OPA1) have been characterized, the mechanisms behind this regulation remain incompletely defined. Here, we found that in addition to its role in mitochondrial division, metallopeptidase OMA1 is required for maintenance of contacts between the inner and outer membranes through a dynamic association with MICOS. This association is independent of OPA1, appears to be mediated via the MIC60 MICOS subunit, and is important for stability of MICOS machinery and the inner-outer mitochondrial membrane contacts. We find that such molecular organization is required for stability of respiratory supercomplexes, optimal bioenergetic output in response to cellular insults, and apoptosis. Loss of OMA1 affects these activities; remarkably it can be partially compensated for by an artificial MICOS-emulating tether protein that bridges the inner and outer mitochondrial membranes. Our data show that OMA1-mediated support of mitochondrial ultrastructure is required for maintenance of mitochondrial architecture and bioenergetics under both basal and homeostasis-challenging conditions and suggest a previously unrecognized role for this protease in mitochondrial physiology. Advisor: Oleh Khalimonchu

    Protease OMA1 modulates mitochondrial bioenergetics and ultrastructure through dynamic association with MICOS complex

    Get PDF
    Remodeling of mitochondrial ultrastructure is a process that is critical for organelle physiology and apoptosis. Although the key players in this process—mitochondrial contact site and cristae junction organizing system (MICOS) and Optic Atrophy 1 (OPA1)—have been characterized, the mechanisms behind its regulation remain incompletely defined. Here, we found that in addition to its role in mitochondrial division, metallopeptidase OMA1 is required for the maintenance of intermembrane connectivity through dynamic association with MICOS. This association is independent of OPA1, mediated via the MICOS subunit MIC60, and is important for stability of MICOS and the intermembrane contacts. The OMA1-MICOS relay is required for optimal bioenergetic output and apoptosis. Loss of OMA1 affects these activities; remarkably it can be alleviated by MICOSemulating intermembrane bridge. Thus, OMA1-dependent ultrastructure support is required for mitochondrial architecture and bioenergetics under basal and stress conditions, suggesting a previously unrecognized role for OMA1 in mitochondrial physiology

    Long non-coding RNA Meg3 deficiency impairs glucose homeostasis and insulin signaling by inducing cellular senescence of hepatic endothelium in obesity

    Get PDF
    Obesity-induced insulin resistance is a risk factor for diabetes and cardiovascular disease. However, the mechanisms underlying endothelial senescence in obesity, and how it impacts obesity-induced insulin resistance remain incompletely understood. In this study, transcriptome analysis revealed that the long non-coding RNA (lncRNA) Maternally expressed gene 3 (Meg3) is one of the top differentially expressed lncRNAs in the vascular endothelium in diet-induced obese mice. Meg3 knockdown induces cellular senescence of endothelial cells characterized by increased senescence-associated β–galactosidase activity, increased levels of endogenous superoxide, impaired mitochondrial structure and function, and impaired autophagy. Moreover, Meg3 knockdown causes cellular senescence of hepatic endothelium in diet-induced obese mice. Furthermore, Meg3 expression is elevated in human nonalcoholic fatty livers and nonalcoholic steatohepatitis livers, which positively correlates with the expression of CDKN2A encoding p16, an important hallmark of cellular senescence. Meg3 knockdown potentiates obesity-induced insulin resistance and impairs glucose homeostasis. Insulin signaling is reduced by Meg3 knockdown in the liver and, to a lesser extent, in the skeletal muscle, but not in the visceral fat of obese mice. We found that the attenuation of cellular senescence of hepatic endothelium by ablating p53 expression in vascular endothelium can restore impaired glucose homeostasis and insulin signaling in obesity. In conclusion, our data demonstrate that cellular senescence of hepatic endothelium promotes obesity-induced insulin resistance, which is tightly regulated by the expression of Meg3. Our results suggest that manipulation of Meg3 expression may represent a novel approach to managing obesity-associated hepatic endothelial senescence and insulin resistance
    corecore