656 research outputs found

    String Imprints from a Pre-inflationary Era

    Full text link
    We derive the equations governing the dynamics of cosmic strings in a flat anisotropic universe of Bianchi type I and study the evolution of simple cosmic string loop solutions. We show that the anisotropy of the background can have a characteristic effect in the loop motion. We discuss some cosmological consequences of these findings and, by extrapolating our results to cosmic string networks, we comment on their ability to survive an inflationary epoch, and hence be a possible fossil remnant (still visible today) of an anisotropic phase in the very early universe.Comment: 5 pages, 3 figure

    Geodesic distance for right invariant Sobolev metrics of fractional order on the diffeomorphism group

    Full text link
    We study Sobolev-type metrics of fractional order s0s\geq0 on the group \Diff_c(M) of compactly supported diffeomorphisms of a manifold MM. We show that for the important special case M=S1M=S^1 the geodesic distance on \Diff_c(S^1) vanishes if and only if s12s\leq\frac12. For other manifolds we obtain a partial characterization: the geodesic distance on \Diff_c(M) vanishes for M=R×N,s<12M=\R\times N, s<\frac12 and for M=S1×N,s12M=S^1\times N, s\leq\frac12, with NN being a compact Riemannian manifold. On the other hand the geodesic distance on \Diff_c(M) is positive for dim(M)=1,s>12\dim(M)=1, s>\frac12 and dim(M)2,s1\dim(M)\geq2, s\geq1. For M=RnM=\R^n we discuss the geodesic equations for these metrics. For n=1n=1 we obtain some well known PDEs of hydrodynamics: Burgers' equation for s=0s=0, the modified Constantin-Lax-Majda equation for s=12s=\frac 12 and the Camassa-Holm equation for s=1s=1.Comment: 16 pages. Final versio

    Topological defects: A problem for cyclic universes?

    Full text link
    We study the behaviour of cosmic string networks in contracting universes, and discuss some of their possible consequences. We note that there is a fundamental time asymmetry between defect network evolution for an expanding universe and a contracting universe. A string network with negligible loop production and small-scale structure will asymptotically behave during the collapse phase as a radiation fluid. In realistic networks these two effects are important, making this solution only approximate. We derive new scaling solutions describing this effect, and test them against high-resolution numerical simulations. A string network in a contracting universe, together with the gravitational radiation background it has generated, can significantly affect the dynamics of the universe both locally and globally. The network can be an important source of radiation, entropy and inhomogeneity. We discuss the possible implications of these findings for bouncing and cyclic cosmological models.Comment: 11 RevTeX 4 pages, 6 figures; version to appear in Phys. Rev.

    Relatório do Grupo de Trabalho de Estatísticas da Saúde

    Get PDF
    O Grupo de Trabalho de Estatísticas de Saúde - GTES foi criado no âmbito do Conselho Superior de Estatística (Secção Permanente de Estatísticas Sociais), com o objetivo de identificar e redefinir o conteúdo do sistema de informação das estatísticas oficiais de saúde nos domínios “estado de saúde e seus determinantes”, “cuidados de saúde”, e “causas de morte”. Para atingir esse objetivo o Grupo, em primeiro lugar, identificou as ineficiências do atual sistema e, posteriormente, diagnosticou as necessidades nacionais e internacionais de informação, de modo a apresentar propostas fundamentadas para a sua reestruturação e racionalização. Neste quadro, a clarificação dos procedimentos de recolha a adotar, com destaque para a explicitação dos atos administrativos existentes, assumiram, desde o início, especial referência no mandato proposto para o GTES

    Lagrangian evolution of global strings

    Full text link
    We establish a method to trace the Lagrangian evolution of extended objects consisting of a multicomponent scalar field in terms of a numerical calculation of field equations in three dimensional Eulerian meshes. We apply our method to the cosmological evolution of global strings and evaluate the energy density, peculiar velocity, Lorentz factor, formation rate of loops, and emission rate of Nambu-Goldstone (NG) bosons. We confirm the scaling behavior with a number of long strings per horizon volume smaller than the case of local strings by a factor of \sim 10. The strategy and the method established here are applicable to a variety of fields in physics.Comment: 5 pages, 2 figure

    The role of Malcolm Clarke (1930–2013) in the Azores as a scientist and educationist

    Get PDF
    Malcolm Roy Clarke (1930–2013) was a British teuthologist who made an important contribution to marine science in the Azores archipelago (Portugal). Malcolm started doing research in the Azores from 1980s onward, settling for residency in 2000 after retirement (in 1987). He kept publishing on Azorean cephalopods collaborating in 20% of the peer reviewed works focus- ing on two main areas: dietary studies; and the ecology of cephalopods on seamounts. Since his first visit in 1981, he was involved in the description of the dietary ecology of several cetaceans, seabirds, and large pelagic and deep-water fish. Using his own data, Malcolm revised the association of cephalopods with seamounts, updating and enlarging the different cephalopod groups according to species behaviour and ecology. Malcolm taught several students working in the Azores on cephalopods and beak identification, lecturing the Third International Workshop in Faial (2007). He empowered the recently established research community, by providing important contacts with foreign institutes and informal advice. He collaborated in the regional cetacean stranding network (RACA) and was an active member of the advisory board of the journal Arquipelago—Life and Marine Sciences . But the scientific role of Malcolm Clarke in the Azores went beyond his academic activities. In the last 10 years Malcolm and Dot Clarke dedicated themselves to building and running a museum on Pico Island, showing the biology of the sperm whale and its interaction with squid; a cultural and touristic legacy for future gen- erations to enjoy

    Further evidence for a variable fine-structure constant from Keck/HIRES QSO absorption spectra

    Full text link
    [Abridged] We previously presented evidence for a varying fine-structure constant, alpha, in two independent samples of Keck/HIRES QSO spectra. Here we present a detailed many-multiplet analysis of a third Keck/HIRES sample containing 78 absorption systems. We also re-analyse the previous samples, providing a total of 128 absorption systems over the redshift range 0.2<z_abs<3.7. All three samples separately yield consistent, significant values of da/a. The analyses of low- and high-z systems rely on different ions/transitions with very different dependencies on alpha, yet they also give consistent results. We identify additional random errors in 22 high-z systems characterized by transitions with a large dynamic range in apparent optical depth. Increasing the statistical errors on da/a for these systems gives our fiducial result, a weighted mean da/a=(-0.543+/-0.116)x10^-5, representing 4.7-sigma evidence for a smaller weighted mean alpha in the absorption clouds. Assuming that da/a=0 at z_abs=0, the data marginally prefer a linear increase in alpha with time: dota/a=(6.40+/-1.35)x10^-16 yr^-1. The two-point correlation function for alpha is consistent with zero over 0.2-13 Gpc comoving scales and the angular distribution of da/a shows no significant dipolar anisotropy. We therefore have no evidence for spatial variations in da/a. We extend our previous searches for possible systematic errors, identifying atmospheric dispersion and isotopic structure effects as potentially the most significant. However, overall, known systematic errors do not explain the results. Future many-multiplet analyses of QSO spectra from different telescopes and spectrographs will provide a now crucial check on our Keck/HIRES results.Comment: 31 pages, 25 figures (29 EPS files), 8 tables. Accepted by MNRAS. Colour versions of Figs. 6, 8 & 10 and text version of Table 3 available at http://www.ast.cam.ac.uk/~mim/pub.htm

    Star Formation and Dynamics in the Galactic Centre

    Full text link
    The centre of our Galaxy is one of the most studied and yet enigmatic places in the Universe. At a distance of about 8 kpc from our Sun, the Galactic centre (GC) is the ideal environment to study the extreme processes that take place in the vicinity of a supermassive black hole (SMBH). Despite the hostile environment, several tens of early-type stars populate the central parsec of our Galaxy. A fraction of them lie in a thin ring with mild eccentricity and inner radius ~0.04 pc, while the S-stars, i.e. the ~30 stars closest to the SMBH (<0.04 pc), have randomly oriented and highly eccentric orbits. The formation of such early-type stars has been a puzzle for a long time: molecular clouds should be tidally disrupted by the SMBH before they can fragment into stars. We review the main scenarios proposed to explain the formation and the dynamical evolution of the early-type stars in the GC. In particular, we discuss the most popular in situ scenarios (accretion disc fragmentation and molecular cloud disruption) and migration scenarios (star cluster inspiral and Hills mechanism). We focus on the most pressing challenges that must be faced to shed light on the process of star formation in the vicinity of a SMBH.Comment: 68 pages, 35 figures; invited review chapter, to be published in expanded form in Haardt, F., Gorini, V., Moschella, U. and Treves, A., 'Astrophysical Black Holes'. Lecture Notes in Physics. Springer 201
    corecore