24,764 research outputs found

    The effects of k-dependent self-energy in the electronic structure of correlated materials

    Full text link
    It is known from self-energy calculations in the electron gas and sp materials based on the GW approximation that a typical quasiparticle renormalization factor (Z factor) is approximately 0.7-0.8. Band narrowing in electron gas at rs = 4 due to correlation effects, however, is only approximately 10%, significantly smaller than the Z factor would suggest. The band narrowing is determined by the frequency-dependent self-energy, giving the Z factor, and the momentum-dependent or nonlocal self-energy. The results for the electron gas point to a strong cancellation between the effects of frequency- and momentum-dependent self-energy. It is often assumed that for systems with a nar- row band the self-energy is local. In this work we show that even for narrow-band materials, such as SrVO3, the nonlocal self-energy is important.Comment: 7 pages, 6 figure

    Controlled Shock Shells and Intracluster Fusion Reactions in the Explosion of Large Clusters

    Full text link
    The ion phase-space dynamics in the Coulomb explosion of very large (∼106−107\sim 10^6 - 10^7 atoms) deuterium clusters can be tailored using two consecutive laser pulses with different intensities and an appropriate time delay. For suitable sets of laser parameters (intensities and delay), large-scale shock shells form during the explosion, thus highly increasing the probability of fusion reactions within the single exploding clusters. In order to analyze the ion dynamics and evaluate the intracluster reaction rate, a one-dimensional theory is used, which approximately accounts for the electron expulsion from the clusters. It is found that, for very large clusters (initial radius ∼\sim 100 nm), and optimal laser parameters, the intracluster fusion yield becomes comparable to the intercluster fusion yield. The validity of the results is confirmed with three-dimensional particle-in-cell simulations.Comment: 25 pages, 11 figures, to appear in Physical Review

    A polarised infrared flare from Sagittarius A* and the signatures of orbiting plasma hotspots

    Get PDF
    In this article we summarise and discuss the infrared, radio, and X-ray emission from the supermassive black hole in the Galactic Centre, SgrA*. We include new results from near-infrared polarimetric imaging observations obtained on May 31st, 2006. In that night, a strong flare in Ks band (2.08 microns) reaching top fluxes of ~16 mJy could be observed. This flare was highly polarised (up to ~40%) and showed clear sub-structure on a time scale of 15 minutes, including a swing in the polarisation angle of about 70 degrees. For the first time we were able to observe both polarised flux and short-time variability, with high significance in the same flare event. This result adds decisive information to the puzzle of the SgrA* activity. The observed polarisation angle during the flare peak is the same as observed in two events in 2004 and 2005. Our observations strongly support the dynamical emission model of a decaying plasma hotspot orbiting SgrA* on a relativistic orbit. The observed polarisation parameters and their variability with time might allow to constrain the orientation of accretion disc and spin axis with respect to the Galaxy.Comment: 9 pages, 8 figures, accepted for publication in MNRA

    Embedded Electricity Quality Analyzer

    Get PDF
    Electric installations are traditionally designed for supplying an electric service. The only one associated instrument is the energy meter that is introduced only for measure the total amount of energy that will be charged to the user. However, the exploration of parameters associated with electricity can provide several advantages such the household performance devices, legal issues and later one a more sustainable way to use the electricity energy. This work presents the principle of a low cost energy analyzer that will be part of an electric home installation. Electric parameters are measured and then transmitted via Wi-Fi to a domestic server where all data are stored. This data exploitation can be later one used for several purposes, since electric efficiency to electric charges prediction.info:eu-repo/semantics/publishedVersio

    Dynamics and control of the expansion of finite-size plasmas produced in ultraintense laser-matter interactions

    Full text link
    The strong influence of the electron dynamics provides the possibility of controlling the expansion of laser-produced plasmas by appropriately shaping the laser pulse. A simple irradiation scheme is proposed to tailor the explosion of large deuterium clusters, inducing the formation of shock structures, capable of driving nuclear fusion reactions. Such a scenario has been thoroughly investigated, resorting to two- and three-dimensional particle-in-cell simulations. Furthermore, the intricate dynamics of ions and electrons during the collisionless expansion of spherical nanoplasmas has been analyzed in detail using a self-consistent ergodic-kinetic model. This study clarifies the transition from hydrodynamic-like to Coulomb-explosion regimes

    Massive binaries in the vicinity of Sgr A*

    Full text link
    A long-term spectroscopic and photometric survey of the most luminous and massive stars in the vicinity of the super-massive black hole Sgr A* revealed two new binaries; a long-period Ofpe/WN9 binary, GCIRS 16NE, with a modest eccentricity of 0.3 and a period of 224 days and an eclipsing Wolf-Rayet binary with a period of 2.3 days. Together with the already identified binary GCIRS 16SW, there are now three confirmed OB/WR binaries in the inner 0.2\,pc of the Galactic Center. Using radial velocity change upper limits, we were able to constrain the spectroscopic binary fraction in the Galactic Center to FSB=0.27−0.19+0.29F_{\rm SB}=0.27^{+0.29}_{-0.19} at a confidence level of 95%, a massive binary fraction similar to that observed in dense clusters. The fraction of eclipsing binaries with photometric amplitudes Δm>0.4\Delta m>0.4 is FEBGC=3±2F^{\rm GC}_{\rm EB}=3\pm2%, which is consistent with local OB star clusters (FEB=1F_{\rm EB}=1%). Overall the Galactic Center binary fraction seems to be close to the binary fraction in comparable young clusters.Comment: 5 figures, submitted to Ap
    • …
    corecore