465 research outputs found

    Coping with suboptimal water temperature: modifications in blood parameters, body composition, and postingestive-driven diet selection in Nile tilapia fed two vegetable oil blends

    Get PDF
    The world tilapia production faces seasonal variations. However, very few nutritional studies have addressed suboptimal temperature. We evaluated the effect of two temperatures (20 or 30 °C) and two vegetable oil blends (one rich in corn oil (COR) and one rich linseed oil (LIN)) on tilapia growth, body composition, and blood parameters using a 2 × 2 factorial design with the following treatments: COR-20; LIN-20; COR-30; LIN-30 (Trial 1). In addition, we also evaluated the effect of postingestive signals of dietary oils when the organoleptic properties of diets were isolated (Trial 2). In the Trial 1, 256 fish (15.36 ± 0.14 g) were placed in 16 aquariums and submitted during 30 days to the 2 × 2 factorial designs: COR-20; LIN-20; COR-30; LIN-30. The temperatures were established in two independent water recirculation systems. In the Trial 2, 96 fish (34.02 ± 0.79 g) were placed in 12 aquariums and subjected to the same experimental design of Trial 1, but to evaluate fish feeding behavior. They were allowed to select the encapsulated diets provided in different feeding halls to evaluate if diet preferences are influenced by postingestive signals. As the Trial 1 results show, diets had no significant effects on growth, dietary protein use, and body centesimal composition, but 30 °C induced the best performance and protein deposition (P < 0.05). LIN-20 showed lower very-low-density lipoprotein and cortisol, but higher high-density lipoprotein (HDL), aspartate aminotransferase (AST), alanine aminotransferase (ALT), and triglycerides (TG) than COR-20 (P < 0.05). COR-30 presented higher HDL, AST, ALT, TG, and cortisol than LIN-30. The fish fed COR showed lower C20:5n-3 (EPA) and higher n-6 than fish fed LIN (P < 0.05). The fish fed LIN had high n-3 highly unsaturated fatty acid. ∑ polyunsaturated fatty acid was higher at 30 °C. Finally, the tilapia in Trial 2 showed clear diet intake regulation and preference for LIN (P < 0.05), regardless of temperature. In short, lipid sources had no influence on tilapia performance; however, temperature affects carcass lipid deposition as well as fatty acids profile. Notably, the preference for linseed oil can suggest nutritional metabolic issues, contributing to animal behavior knowledge

    Differences Between Hole and Electron Doping of a Two-Leg CuO Ladder

    Full text link
    Here we report results of a density-matrix-renormalization-group (DMRG) calculation of the charge, spin, and pairing properties of a two-leg CuO Hubbard ladder. The outer oxygen atoms as well as the rung and leg oxygen atoms are included along with near-neighbor and oxygen-hopping matrix elements. This system allows us to study the effects of hole and electron doping on a system which is a charge transfer insulator at a filling of one hole per Cu and exhibits power law, d-wave-like pairing correlations when doped. In particular, we focus on the differences between doping with holes or electrons.Comment: REVTEX 4, 10 pages, 13 figure

    Elephant grass silage inoculated with cellulolytic fungi isolated from rumen

    Get PDF
    ABSTRACT The objective was to evaluate the inoculation with Aspergillus terreus and/or Trichoderma longibrachiatum on fermentation, chemical and microbiological composition of elephant grass ‘Cameroon’ silage (Cenchrus purpureus). Treatments were A. terreus at 105 colony forming units (CFU)/g (AT15), T. longibrachiatum at 105 CFU/g (TL20), a mixture of both at 105 CFU/g (MIX), and a control group without inoculation (CONTR). The design was completely randomized with seven replicates. The MIX silage was most stable, while CONTR, AT15, and TL20, had lower dry matter losses. There was no effect of inoculation in the chemical composition of silages. Only MIX silage (4.40) had pH above the minimum of 4.2 for humid grass silage and above the control (4.05). Bacteria from Diplococcus genus was identified at the opening of TL20 and CONTR silages. After air exposure, the population of rods, Lactobacillus, and total lactic acid bacteria was higher in theTL20 and MIX. The inclusion of a T. longibrachiatum and A. terreus mixture increases dry mater loss and silage pH. T. longibrachiatum was more efficient in maintaining populations of total lactic acid bacteria after opening; therefore, this strain has potential as an additive for elephant grass ‘Cameroon’ silage
    corecore