29,401 research outputs found
Probability distribution of the order parameter
The probability distribution of the order parameter is exploited in order to
obtain the criticality of magnetic systems. Monte Carlo simulations have been
employed by using single spin flip Metropolis algorithm aided by finite-size
scaling and histogram reweighting techniques. A method is proposed to obtain
this probability distribution even when the transition temperature of the model
is unknown. A test is performed on the two-dimensional spin-1/2 and spin-1
Ising model and the results show that the present procedure can be quite
efficient and accurate to describe the criticality of the system.Comment: 5 pages, 7 figures, to appear in Braz. J. Phys. 34, June 200
Controlled Shock Shells and Intracluster Fusion Reactions in the Explosion of Large Clusters
The ion phase-space dynamics in the Coulomb explosion of very large ( atoms) deuterium clusters can be tailored using two consecutive
laser pulses with different intensities and an appropriate time delay. For
suitable sets of laser parameters (intensities and delay), large-scale shock
shells form during the explosion, thus highly increasing the probability of
fusion reactions within the single exploding clusters. In order to analyze the
ion dynamics and evaluate the intracluster reaction rate, a one-dimensional
theory is used, which approximately accounts for the electron expulsion from
the clusters. It is found that, for very large clusters (initial radius
100 nm), and optimal laser parameters, the intracluster fusion yield becomes
comparable to the intercluster fusion yield. The validity of the results is
confirmed with three-dimensional particle-in-cell simulations.Comment: 25 pages, 11 figures, to appear in Physical Review
Modelling radiation emission in the transition from the classical to the quantum regime
An emissivity formula is derived using the generalised
Fermi-Weizacker-Williams method of virtual photons which accounts for the
recoil the charged particle experiences as it emits radiation. It is found that
through this derivation the formula obtained by Sokolov et al using QED
perturbation theory is recovered. The corrected emissivity formula is applied
to nonlinear Thomson scattering scenarios in the transition from the classical
to the quantum regime, for small values of the nonlinear quantum parameter
\chi. Good agreement is found between this method and a QED probabilistic
approach for scenarios where both are valid. In addition, signatures of the
quantum corrections are identified and explored.Comment: 11 pages, 4 figures, submitted for publicatio
- …