26,415 research outputs found
Curved Graphene Nanoribbons: Structure and Dynamics of Carbon Nanobelts
Carbon nanoribbons (CNRs) are graphene (planar) structures with large aspect
ratio. Carbon nanobelts (CNBs) are small graphene nanoribbons rolled up into
spiral-like structures, i. e., carbon nanoscrolls (CNSs) with large aspect
ratio. In this work we investigated the energetics and dynamical aspects of
CNBs formed from rolling up CNRs. We have carried out molecular dynamics
simulations using reactive empirical bond-order potentials. Our results show
that similarly to CNSs, CNBs formation is dominated by two major energy
contribution, the increase in the elastic energy due to the bending of the
initial planar configuration (decreasing structural stability) and the
energetic gain due to van der Waals interactions of the overlapping surface of
the rolled layers (increasing structural stability). Beyond a critical diameter
value these scrolled structures can be even more stable (in terms of energy)
than their equivalent planar configurations. In contrast to CNSs that require
energy assisted processes (sonication, chemical reactions, etc.) to be formed,
CNBs can be spontaneously formed from low temperature driven processes. Long
CNBs (length of 30.0 nm) tend to exhibit self-folded racket-like
conformations with formation dynamics very similar to the one observed for long
carbon nanotubes. Shorter CNBs will be more likely to form perfect scrolled
structures. Possible synthetic routes to fabricate CNBs from graphene membranes
are also addressed
Structural studies of mesoporous ZrO-CeO and ZrO-CeO/SiO mixed oxides for catalytical applications
In this work the synthesis of ZrO-CeO and
ZrO-CeO/SiO were developed, based on the process to form
ordered mesoporous materials such as SBA-15 silica. The triblock copolymer
Pluronic P-123 was used as template, aiming to obtain crystalline single phase
walls and larger specific surface area, for future applications in catalysis.
SAXS and XRD results showed a relationship between ordered pores and the
material crystallization. 90% of CeO leaded to single phase homogeneous
ceria-zirconia solid solution of cubic fluorite structure (Fmm). The
SiO addition improved structural and textural properties as well as the
reduction behavior at lower temperatures, investigated by XANES measurements
under H atmosphere
Non-commutative fermion mass matrix and gravity
The first part is an introductory description of a small cross-section of the
literature on algebraic methods in non-perturbative quantum gravity with a
specific focus on viewing algebra as a laboratory in which to deepen
understanding of the nature of geometry. This helps to set the context for the
second part, in which we describe a new algebraic characterisation of the Dirac
operator in non-commutative geometry and then use it in a calculation on the
form of the fermion mass matrix. Assimilating and building on the various ideas
described in the first part, the final part consists of an outline of a
speculative perspective on (non-commutative) quantum spectral gravity. This is
the second of a pair of papers so far on this project.Comment: To appear in Int. J. Mod. Phys. A Previous title: An outlook on
quantum gravity from an algebraic perspective. 39 pages, 1 xy-pic figure,
LaTex Reasons for new version: added references, change of title and some
comments more up-to-dat
Off-axis retrieval of orbital angular momentum of light stored in cold atoms
We report on the storage of orbital angu- lar momentum (OAM) of light of a
Laguerre-Gaussian mode in an ensemble of cold cesium atoms and its re- trieval
along an axis different from the incident light beam. We employed a
time-delayed four-wave mixing configuration to demonstrate that at small angle
(2o), after storage, the retrieved beam carries the same OAM as the one encoded
in the input beam. A calculation based on mode decomposition of the retrieved
beam over the Laguerre-Gaussian basis is in agreement with the experimental
observations done at small angle values. However, the calculation shows that
the OAM retrieving would get lost at larger angles, reducing the fidelity of
such storing-retrieving process. In addition, we have also observed that by
applying an external magnetic field to the atomic ensemble the retrieved OAM
presents Larmor oscillations, demonstrating the possibility of its manipulation
and off-axis retrieval.Comment: 9 pages, 4 figure
- …