1 research outputs found

    Herbicide and Cytogenotoxic Activity of Inclusion Complexes of Psidium gaudichaudianum Leaf Essential Oil and β-Caryophyllene on 2-Hydroxypropyl-β-cyclodextrin

    Get PDF
    Funding Information: We would like to thank Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG), and Fundação de Amparo à Pesquisa e Inovação do Espírito Santo (FAPES) for financial support. Publisher Copyright: © 2023 by the authors.The present investigation aimed to develop inclusion complexes (ICs) from Psidium gaudichaudianum (GAU) essential oil (EO) and its major compound β-caryophyllene (β-CAR), and to evaluate their herbicidal (against Lolium multiflorum and Bidens pilosa) and cytogenotoxic (on Lactuca sativa) activities. The ICs were obtained using 2-hydroxypropyl-β-cyclodextrin (HPβCD) and they were prepared to avoid or reduce the volatility and degradation of GAU EO and β-CAR. The ICs obtained showed a complexation efficiency of 91.5 and 83.9% for GAU EO and β-CAR, respectively. The IC of GAU EO at a concentration of 3000 µg mL−1 displayed a significant effect against weed species B. pilosa and L. multiflorum. However, the β-CAR IC at a concentration of 3000 µg mL−1 was effective only on L. multiflorum. In addition, the cytogenotoxic activity evaluation revealed that there was a reduction in the mitotic index and an increase in chromosomal abnormalities. The produced ICs were able to protect the EO and β-CAR from volatility and degradation, with a high thermal stability, and they also enabled the solubilization of the EO and β-CAR in water without the addition of an organic solvent. Therefore, it is possible to indicate the obtained products as potential candidates for commercial exploration since the ICs allow the complexed EO to exhibit a more stable chemical constitution than pure EO under storage conditions.publishersversionpublishe
    corecore