11,521 research outputs found

    On the strategy frequency problem in batch Minority Games

    Get PDF
    Ergodic stationary states of Minority Games with S strategies per agent can be characterised in terms of the asymptotic probabilities Ď•a\phi_a with which an agent uses aa of his strategies. We propose here a simple and general method to calculate these quantities in batch canonical and grand-canonical models. Known analytic theories are easily recovered as limiting cases and, as a further application, the strategy frequency problem for the batch grand-canonical Minority Game with S=2 is solved. The generalization of these ideas to multi-asset models is also presented. Though similarly based on response function techniques, our approach is alternative to the one recently employed by Shayeghi and Coolen for canonical batch Minority Games with arbitrary number of strategies.Comment: 17 page

    On the transition to efficiency in Minority Games

    Full text link
    The existence of a phase transition with diverging susceptibility in batch Minority Games (MGs) is the mark of informationally efficient regimes and is linked to the specifics of the agents' learning rules. Here we study how the standard scenario is affected in a mixed population game in which agents with the `optimal' learning rule (i.e. the one leading to efficiency) coexist with ones whose adaptive dynamics is sub-optimal. Our generic finding is that any non-vanishing intensive fraction of optimal agents guarantees the existence of an efficient phase. Specifically, we calculate the dependence of the critical point on the fraction qq of `optimal' agents focusing our analysis on three cases: MGs with market impact correction, grand-canonical MGs and MGs with heterogeneous comfort levels.Comment: 12 pages, 3 figures; contribution to the special issue "Viewing the World through Spin Glasses" in honour of David Sherrington on the occasion of his 65th birthda

    Adaptive drivers in a model of urban traffic

    Full text link
    We introduce a simple lattice model of traffic flow in a city where drivers optimize their route-selection in time in order to avoid traffic jams, and study its phase structure as a function of the density of vehicles and of the drivers' behavioral parameters via numerical simulations and mean-field analytical arguments. We identify a phase transition between a low- and a high-density regime. In the latter, inductive drivers may surprisingly behave worse than randomly selecting drivers.Comment: 7 pages, final versio

    ESR theory for interacting 1D quantum wires

    Get PDF
    We compute the electron spin resonance (ESR) intensity for one-dimensional quantum wires in semiconductor heterostructures, taking into account electron-electron interactions and spin-orbit coupling. The ESR spectrum is shown to be very sensitive to interactions. While in the absence of interactions, the spectrum is a flat band, characteristic threshold singularities appear in the interacting limit. This suggests the practical use of ESR to reveal spin dynamics in a Luttinger liquid.Comment: 7 pages, 2 figures. To be published in Europhys. Let

    Predicting lorawan behavior. How machine learning can help

    Get PDF
    Large scale deployments of Internet of Things (IoT) networks are becoming reality. From a technology perspective, a lot of information related to device parameters, channel states, network and application data are stored in databases and can be used for an extensive analysis to improve the functionality of IoT systems in terms of network performance and user services. LoRaWAN (Long Range Wide Area Network) is one of the emerging IoT technologies, with a simple protocol based on LoRa modulation. In this work, we discuss how machine learning approaches can be used to improve network performance (and if and how they can help). To this aim, we describe a methodology to process LoRaWAN packets and apply a machine learning pipeline to: (i) perform device profiling, and (ii) predict the inter-arrival of IoT packets. This latter analysis is very related to the channel and network usage and can be leveraged in the future for system performance enhancements. Our analysis mainly focuses on the use of k-means, Long Short-Term Memory Neural Networks and Decision Trees. We test these approaches on a real large-scale LoRaWAN network where the overall captured traffic is stored in a proprietary database. Our study shows how profiling techniques enable a machine learning prediction algorithm even when training is not possible because of high error rates perceived by some devices. In this challenging case, the prediction of the inter-arrival time of packets has an error of about 3.5% for 77% of real sequence cases

    Thermodynamics of rotating self-gravitating systems

    Full text link
    We investigate the statistical equilibrium properties of a system of classical particles interacting via Newtonian gravity, enclosed in a three-dimensional spherical volume. Within a mean-field approximation, we derive an equation for the density profiles maximizing the microcanonical entropy and solve it numerically. At low angular momenta, i.e. for a slowly rotating system, the well-known gravitational collapse ``transition'' is recovered. At higher angular momenta, instead, rotational symmetry can spontaneously break down giving rise to more complex equilibrium configurations, such as double-clusters (``double stars''). We analyze the thermodynamics of the system and the stability of the different equilibrium configurations against rotational symmetry breaking, and provide the global phase diagram.Comment: 12 pages, 9 figure

    Spin-resolved scattering through spin-orbit nanostructures in graphene

    Get PDF
    We address the problem of spin-resolved scattering through spin-orbit nanostructures in graphene, i.e., regions of inhomogeneous spin-orbit coupling on the nanometer scale. We discuss the phenomenon of spin-double refraction and its consequences on the spin polarization. Specifically, we study the transmission properties of a single and a double interface between a normal region and a region with finite spin-orbit coupling, and analyze the polarization properties of these systems. Moreover, for the case of a single interface, we determine the spectrum of edge states localized at the boundary between the two regions and study their properties

    Predicting lorawan behavior. How machine learning can help

    Get PDF
    Large scale deployments of Internet of Things (IoT) networks are becoming reality. From a technology perspective, a lot of information related to device parameters, channel states, network and application data are stored in databases and can be used for an extensive analysis to improve the functionality of IoT systems in terms of network performance and user services. LoRaWAN (Long Range Wide Area Network) is one of the emerging IoT technologies, with a simple protocol based on LoRa modulation. In this work, we discuss how machine learning approaches can be used to improve network performance (and if and how they can help). To this aim, we describe a methodology to process LoRaWAN packets and apply a machine learning pipeline to: (i) perform device profiling, and (ii) predict the inter-arrival of IoT packets. This latter analysis is very related to the channel and network usage and can be leveraged in the future for system performance enhancements. Our analysis mainly focuses on the use of k-means, Long Short-Term Memory Neural Networks and Decision Trees. We test these approaches on a real large-scale LoRaWAN network where the overall captured traffic is stored in a proprietary database. Our study shows how profiling techniques enable a machine learning prediction algorithm even when training is not possible because of high error rates perceived by some devices. In this challenging case, the prediction of the inter-arrival time of packets has an error of about 3.5% for 77% of real sequence cases
    • …
    corecore