21 research outputs found

    A Novel Technique for the In Vivo Imaging of Autoimmune Diabetes Development in the Pancreas by Two-Photon Microscopy

    Get PDF
    Type 1 diabetes (T1D) is characterized by the immune-mediated destruction of beta cells in the pancreas. Little is known about the in vivo dynamic interactions between T cells and beta cells or the kinetic behavior of other immune cell subsets in the pancreatic islets. Utilizing multiphoton microscopy we have designed a technique that allows for the real-time visualization of diabetogenic T cells and dendritic cells in pancreatic islets in a live animal, including their interplay with beta cells and the vasculature. Using a custom designed stage, the pancreas was surgically exposed under live conditions so that imaging of islets under intact blood pressure and oxygen supply became possible. We demonstrate here that this approach allows for the tracking of diabetogenic leukocytes as well as vascularization phenotype of islets and accumulation of dendritic cells in islets during diabetes pathogenesis. This technique should be useful in mapping crucial kinetic events in T1D pathogenesis and in testing the impact of immune based interventions on T cell migration, extravasation and islet destruction

    Resolution of a chronic viral infection after interleukin-10 receptor blockade

    Get PDF
    A defining characteristic of persistent viral infections is the loss and functional inactivation of antiviral effector T cells, which prevents viral clearance. Interleukin-10 (IL-10) suppresses cellular immune responses by modulating the function of T cells and antigen-presenting cells. In this paper, we report that IL-10 production is drastically increased in mice persistently infected with lymphocytic choriomeningitis virus. In vivo blockade of the IL-10 receptor (IL-10R) with a neutralizing antibody resulted in rapid resolution of the persistent infection. IL-10 secretion was diminished and interferon γ production by antiviral CD8+ T cells was enhanced. In persistently infected mice, CD8α+ dendritic cell (DC) numbers declined early after infection, whereas CD8α− DC numbers were not affected. CD8α− DCs supported IL-10 production and subsequent dampening of antiviral T cell responses. Therapeutic IL-10R blockade broke the cycle of IL-10–mediated immune suppression, preventing IL-10 priming by CD8α− DCs and enhancing antiviral responses and thereby resolving infection without causing immunopathology

    CpG-Containing Oligonucleotides Are Efficient Adjuvants for Induction of Protective Antiviral Immune Responses with T-Cell Peptide Vaccines

    No full text
    Synthetic nonmethylated oligonucleotides containing CpG dinucleotides (CpG-ODNs) have been shown to exhibit immunostimulatory activity. CpG-ODNs have the capacity to directly activate B cells, macrophages, and dendritic cells, and we show here that this is reflected by cell surface binding of oligonucleotides to these cell subsets. However, T cells are not directly activated by CpG-ODNs, which correlates with the failure to bind to the T-cell surface. Efficient competition for CpG-induced B-cell activation by non-CpG-containing oligonucleotides suggests that oligonucleotides might bind to an as yet undefined sequence-nonspecific receptor prior to cellular activation. Induction of protective T-cell responses against challenge infection with lymphocytic choriomeningitis virus (LCMV) or with recombinant vaccinia virus expressing the LCMV glycoprotein was achieved by immunizing mice with the immunodominant major histocompatibility complex class I-binding LCMV glycoprotein-derived peptide gp33 together with CpG-ODNs. In these experiments, B cells, potentially serving as CpG-ODN-activated antigen-presenting cells (APCs), were not required for induction of protective immunity since CpG-ODN–gp33-immunized B-cell-deficient mice were equally protected against challenge infection with both viruses. This finding suggested that macrophages and/or dendritic cells were sufficiently activated in vivo by CpG-ODNs to serve as potent APCs for the induction of naive T cells. Furthermore, treatment with CpG-ODN alone induced protection against infection with Listeria monocytogenes via antigen-independent activation of macrophages. These data suggest that CpG activation of macrophages and dendritic cells may provide a critical step in CpG-ODN adjuvant activity

    Immunodominance of an antiviral cytotoxic T cell response is shaped by the kinetics of viral protein expression

    Full text link
    Lymphocytic choriomeningitis virus (LCMV) infection induces a protective CTL response consisting of gp- and nucleoprotein (NP)-specific CTL. We find that a small load of LCMV led to immunodominance of NP-CTL, whereas a large viral load resulted in dominance of gp-CTL. This is the first study describing that immunodominance is not fixed after infection with a given pathogen, but varies with the viral load instead. We assumed higher Ag sensitivity for NP-CTL, which would explain their preferential priming at low viral load, as well as their overstimulation resulting in selective exhaustion at high viral load. The higher Ag sensitivity of NP-CTL was due to faster kinetics of NP-epitope presentation. Thus, we uncover a novel factor that impinges upon immunodominance and is related to the kinetics of virus protein expression. We propose that CTL against early viral proteins swiftly interfere with virus replication, resulting in efficient protection. If these "early" CTL fail in immediate virus control, they are activated in the face of higher viral load compared with "late" CTL and are therefore prone to be exhausted. Thus, the observed absence of early CTL in persistent infections might not be the cause, but rather the consequence of viral persistence
    corecore