12 research outputs found

    The Particle Tracking Silicon Microscope PTSM

    Get PDF
    Abstract-A novel position-and energy-sensitive particle detector for radiobiological application is described. The aim is to support research in radiation response of biological systems, for example in the induction of mutations in C. elegans, where precise knowledge of location and intensity of the radiation is crucial to understand radiation sensitivity of individual cells. The "Particle Tracking Silicon Microscope" (PTSM) consists of a silicon strip detector in direct contact with radiobiological samples (e.g., C. elegans), such that the location and intensity of particle radiation can be controlled at the 10”m scale. The readout is performed with low-noise readout electronics, which allows the determination of the particle's position from the hit strip address and its energy from the specific energy loss. In our implementation, the energy loss is measured through the timeover-threshold (TOT). The noise rate at acceptable thresholds is so low that the single particles can be detected with 100% efficiency. The performance of the front-end ASIC is described, and the results of initial environmental tests are reported. These include placing biological samples and saline solutions in direct contact with the silicon detectors

    High-Energy Radiation from Thunderstorms with ADELE: TGFs, Steps, and Glows

    Get PDF
    The biggest challenge in the study of high-energy processes in thunderstorms is getting a detector to the vicinity of the electrically active regions of a storm. The Airborne Detector for Energetic Lightning Emissions (ADELE) has been used to detect gamma rays from aircraft above storms and from a storm-chasing van on the ground. In August 2009, ADELE flew above Florida storms in a Gulfstream V jet, detecting the first terrestrial gamma-ray flash (TGF) seen from a plane and continuous glows of high-energy emission above thunderclouds. The presence of these glows suggests that a gradual process of relativistic runaway and feedback may help limit the total amount of charging in thunderstorms, in contrast to the traditional view that only lightning discharges compete with the charging process. The upper limits on TGF emission from intracloud and cloud-to-ground lightning from the ADELE flights demonstrated conclusively that a TGF of the sort seen from space is not associated with most lightning and not necessary to trigger it. In August 2010, observations from a van detected stepped-leader x-ray emission from at least four lightning strikes in ten days of operations. This mode of operation is therefore promising for future observations of the stepping process, although a more varied suite of instrumentation, in particular a flash-distance detector, would be useful. We will report on these results and on future possibilities for ADELE campaigns

    The ABC130 barrel module prototyping programme for the ATLAS strip tracker

    Full text link
    For the Phase-II Upgrade of the ATLAS Detector, its Inner Detector, consisting of silicon pixel, silicon strip and transition radiation sub-detectors, will be replaced with an all new 100 % silicon tracker, composed of a pixel tracker at inner radii and a strip tracker at outer radii. The future ATLAS strip tracker will include 11,000 silicon sensor modules in the central region (barrel) and 7,000 modules in the forward region (end-caps), which are foreseen to be constructed over a period of 3.5 years. The construction of each module consists of a series of assembly and quality control steps, which were engineered to be identical for all production sites. In order to develop the tooling and procedures for assembly and testing of these modules, two series of major prototyping programs were conducted: an early program using readout chips designed using a 250 nm fabrication process (ABCN-25) and a subsequent program using a follow-up chip set made using 130 nm processing (ABC130 and HCC130 chips). This second generation of readout chips was used for an extensive prototyping program that produced around 100 barrel-type modules and contributed significantly to the development of the final module layout. This paper gives an overview of the components used in ABC130 barrel modules, their assembly procedure and findings resulting from their tests.Comment: 82 pages, 66 figure

    Lessons Learned in High Frequency Data Transmission Design: ATLAS Strips Bus Tape

    No full text
    Requirements of HEP experiments lead to highly integrated systems with many electrical, mechanical and thermal constraints. A complex performance optimisation is therefore required. High speed data transmission lines are designed using copper-polyimide flexible bus tapes rather than cable harnesses to minimize radiation length. Methods to improve the signal integrity of point-to-point links and multi-drop configurations in an ultra-low-mass system are described. FEA calculations are an essential guide to the optimisation which allow data rates of 640 Mbps for point-to-point links over a length of up to 1.4m, as well as 160 Mbps for multi-drop configuration. The designs were validated using laboratory measurements of S-parameters and direct BER tests

    Relativistic electron avalanches as a thunderstorm discharge competing with lightning

    No full text
    Gamma-ray ‘glows’ are long duration (seconds to tens of minutes) X-ray and gamma-ray emission coming from thunderclouds. Measurements suggest the presence of relativistic runaway electron avalanches (RREA), the same process underlying terrestrial gamma-ray flashes. Here we demonstrate that glows are relatively a common phenomena near the tops of thunderstorms, when compared with events such as terrestrial gamma-ray flashes. Examining the strongest glow measured by the airborne detector for energetic emissions, we show that this glow is measured near the end of a downward RREA, consistent with occurring between the upper positive charge layer and the negative screening layer above it. The glow discharges the upper positive layer by ≄9.6 mA, strong enough to be an important charging mechanism of the storm. For this glow, the gamma-ray flux observed is close to the value at which relativistic feedback processes become important, with an avalanche multiplication factor of 4,500

    Strip sensor performance in prototype modules built for ATLAS ITk

    No full text
    The ATLAS Phase-II Upgrade for the High-Luminosity LHC features replacement of the Inner Detector with an all-silicon Inner Tracker (ITk). The majority of the instrumented area in ITk is occupied by strip modules covering 165 m2. A vigorous R&D program has been on-going for many years to prepare for the scale of the project and to work out technical issues at all key components of the system, including the strip sensors, readout ASICs, hybrids, modules, and staves. In this submission we report on the performance of silicon strip sensors used in the last completed round of module prototyping. Over 80 modules were built and tested with electrical readout on the per-channel basis and the sensor performance was assessed. In general, an excellent performance was observed, consistent with previous ASIC-level and sensor-level tests. However, the lessons learned included two phenomena important for the future phases of the project. First was the need to store and test the modules in a dry environment due to humidity sensitivity of the sensors. The second was a rare observation of high noise on some channels, at the rate of about 3%. The high noise regions were tested further in several ways, including monitoring the performance as a function of time and bias voltage. Additionally, direct sensor-level tests were performed on the affected channels. The inter-strip resistance and bias resistance tests showed low values, indicating a temporary loss of the inter-strip isolation. A subsequent recovery of the noise performance was observed. We present the test details, an analysis of how the inter-strip isolation affects the module noise, and relationship with sensor-level quality control tests
    corecore