53,528 research outputs found

    Unitarity of the Leptonic Mixing Matrix

    Get PDF
    We determine the elements of the leptonic mixing matrix, without assuming unitarity, combining data from neutrino oscillation experiments and weak decays. To that end, we first develop a formalism for studying neutrino oscillations in vacuum and matter when the leptonic mixing matrix is not unitary. To be conservative, only three light neutrino species are considered, whose propagation is generically affected by non-unitary effects. Precision improvements within future facilities are discussed as well.Comment: Standard Model radiative corrections to the invisible Z width included. Some numerical results modified at the percent level. Updated with latest bounds on the rare tau decay. Physical conculsions unchange

    Entangled single-wire NiTi material: a porous metal with tunable superelastic and shape memory properties

    Full text link
    NiTi porous materials with unprecedented superelasticity and shape memory were manufactured by self-entangling, compacting and heat treating NiTi wires. The versatile processing route used here allows to produce entanglements of either superelastic or ferroelastic wires with tunable mesostructures. Three dimensional (3D) X-ray microtomography shows that the entanglement mesostructure is homogeneous and isotropic. The thermomechanical compressive behavior of the entanglements was studied using optical measurements of the local strain field. At all relative densities investigated here (∌\sim 25 - 40%\%), entanglements with superelastic wires exhibit remarkable macroscale superelasticity, even after compressions up to 25%\%, large damping capacity, discrete memory effect and weak strain-rate and temperature dependencies. Entanglements with ferroelastic wires resemble standard elastoplastic fibrous systems with pronounced residual strain after unloading. However, a full recovery is obtained by heating the samples, demonstrating a large shape memory effect at least up to 16% strain.Comment: 31 pages, 10 figures, submitted to Acta Materiali

    Quality of a Which-Way Detector

    Full text link
    We introduce a measure Q of the "quality" of a quantum which-way detector, which characterizes its intrinsic ability to extract which-way information in an asymmetric two-way interferometer. The "quality" Q allows one to separate the contribution to the distinguishability of the ways arising from the quantum properties of the detector from the contribution stemming from a-priori which-way knowledge available to the experimenter, which can be quantified by a predictability parameter P. We provide an inequality relating these two sources of which-way information to the value of the fringe visibility displayed by the interferometer. We show that this inequality is an expression of duality, allowing one to trace the loss of coherence to the two reservoirs of which-way information represented by Q and P. Finally, we illustrate the formalism with the use of a quantum logic gate: the Symmetric Quanton-Detecton System (SQDS). The SQDS can be regarded as two qubits trying to acquire which way information about each other. The SQDS will provide an illustrating example of the reciprocal effects induced by duality between system and which-way detector.Comment: 10 pages, 5 figure
    • 

    corecore