1,318 research outputs found

    Dynamics of large-scale fluidized bed combustion plants

    Get PDF
    Fluidized bed combustion (FBC) plants are widely used in energy systems across the world for the thermochemical conversion of solid fuels, and are especially suitable for low-rank fuels (a category to which renewable solid fuels belong). FBC plants are traditionally operated for base-load electricity production and for heat production, both of which processes are characterized by steady and stable operation. As the share of variable renewable electricity (VRE) sources is expected to increase dramatically, FBC plants will have to adapt their operations to the new flexibility requirements related to the inherent variability of VRE sources. By enhancing their operational and product flexibilities, FBC plants can remain financially attractive and offer services to support the balancing of the grid. As tools for assessing the operational flexibility of thermal power plants, dynamic modeling and simulation are gaining attention from both researchers and plant operators. However, it is a common practice to assume that the dynamics of the gas side are much faster than those of the water-steam side, i.e., not accounting for the in-furnace dynamic mechanisms.This thesis aims to characterize the dynamic behaviors of commercial-scale FBC plants, accounting for both the gas and water-steam sides of bubbling and circulating fluidized bed (BFB and CFB) units. For this purpose, a dynamic semiempirical model of the gas side of FBC plants is developed and integrated into a process model of the water-steam side. The models are validated against steady-state and transient operational data measured at two commercial-scale industrial units. The model is then used to analyze the inherent dynamics of the gas and water-steam sides, to compare the transient behaviors of BFB and CFB units, and to assess the dynamic performances of FBC plants when operated under different control structures. The results of the dynamic analysis show that the stabilization times of the temperatures across the furnace differ, largely based on the local heat capacity of the region in the furnace, i.e., the amount of bulk solids. The work includes an assessment of the impact of the characteristic times of the in-furnace mechanisms (i.e., fluid dynamics, fuel conversion and heat transfer) on the computed stabilization times of key in-furnace variables at plant level, and suggests some simple mathematical relationships for predicting these times. When accounting for the water-steam side, the results show that the inherent dynamics of variables such as live steam pressure, flow and power production are in the same order of magnitude as the dynamics of the gas side, particularly for the CFB case. This highlights the importance of accounting for the gas side when attempting to model accurately the dynamics of FBC plants. Furthermore, FBC plants are found to be able to provide fast load changes when operated under control structures that manipulate the live steam valve, although this is found to trigger operational issues, such as pressure overshoots.The results of this thesis are of particular importance in terms of assessing the transient capabilities of FBC plants to operate in electricity-driven markets where fast operation is required, and they can be used to identify opportunities and challenges. Furthermore, knowledge about the transient operation of large-scale FB reactors will be crucial for the development of FB applications other than combustion, such as polygeneration or thermochemical energy storage

    Fluidized bed plants for heat and power production in future energy systems

    Get PDF
    Fluidized bed (FB) plants are used for heat and power production in several energy systems around the world, with particular importance in systems using large shares of renewable solid fuel, e.g., biomass. These FB plants are traditionally operated for base-load electricity production or for heat production, and thus characterized by relatively small and slow load changes. In parallel, as the transition towards energy systems with net-zero emissions increases the share of variable renewable energy (VRE) sources, the need for implementing variation management strategies at various timescales arises – giving heat and power plants the possibility to adapt their operations to accommodate the inherent variability of VRE sources. Following this, FB technology is envisioned for a wide range of novel applications expected to play significant roles in the decarbonization of energy systems, such as thermochemical energy storage and carbon capture and storage. In this context, research efforts are needed to investigate the technical and economic features of FB plants in energy systems with high levels of VRE.The aim of this thesis is to elucidate the capabilities of FB plants for heat and power production in net-zero emissions energy systems. For this purpose, two main pathways are explored: i) transient operation as fuel-fed plants, and ii) the potential conversion into decarbonized plants, i.e., into VRE-fed layouts providing dispatchable outputs.For fuel-fed FB plants, a dynamic model of biomass-fired FB plants has been developed, considering the two types of FB boilers (BFB and CFB) and including validation against steady-state and transient operational data collected from two commercial plants. As a novelty of this work the model describes both the gas (in-furnace) and water-steam sides such that the interactions between the two can be assessed. The results of the simulations show that i) the characteristic times for the gas side are shorter in BFB furnaces than in CFBs, albeit these times are for both furnace types not longer than those for the water-steam side; ii) the computed timescales for the dynamics of FB plants fall well within those required for offering complementing services to the grid; and iii) the use of control and operational strategies for the water-steam side can confer capabilities superior to fuel-feeding control in terms of avoiding undesirable unburnt emissions and providing temporary overload operation. The retrofit of fuel-fed FB plants into poly-generation facilities cogenerating a combustible biogenic gas is also assessed, revealing that partial combustion of this gas can be used to provide faster inherent dynamics than the original configuration.For VRE-fed FB layouts, techno-economic process modeling has been carried out for large-scale deployment of solar- and electricity-charging processes based on three different chemical systems: i) carbonation/calcination (calcium); ii) thermally reduced redox (cobalt oxides); and iii) chemically reduced redox (iron oxides). One attractive aspect of these layouts is the possibility to build part of them by retrofitting current fuel-fed FB plants. While the technical assessment for solar applications indicates that cobalt-based layouts offer the highest levels of efficiency and dispatchability, calcium-based processes present better economics owing to the use of inexpensive calcium material. The results also show that electricity-charged layouts such as iron looping can play an important role in the system providing variation management strategies to the grid while avoiding costly H2 storage. Further, the economic performances of VRE-fed FB layouts are benefitted by the generation of additional services and products (e.g., carbon capture and on-demand production of H2), and by scenarios with high volatility of the electricity prices

    Thermochemical Energy Storage with Integrated District Heat Production—A Case Study of Swede

    Get PDF
    The implementation of electricity-charged thermochemical energy storage (TCES) using high-temperature solid cycles would benefit the energy system by enabling the absorption of variable renewable energy (VRE) and its conversion into dispatchable heat and power. Using a Swedish case study, this paper presents a process for TCES-integrated district heating (DH) production, assesses its technical suitability, and discusses some practical implications and additional implementation options. The mass and energy flows of a biomass plant retrofitted with an iron-based redox loop are calculated for nine specific scenarios that exemplify its operation under electricity generation mixes that differ with respect to variability and price. In addition, the use of two types of electrolyzers (low-temperature and high-temperature versions) is investigated. The results show that for the Swedish case, the proposed scheme is technically feasible and capable of covering the national DH demand by making use of the existing DH plants, with an estimated process energy efficiency (electricity to heat) of 90%. The results also show that for a retrofit of the entire Swedish DH fleet, the required inventories of iron are approximately 2.8 Mt for the intermediate scenario, which represents 0.3% and 11.0% of the national reserves and annual metallurgical production rates of the national industry, respectively. In addition to the dispatchable heat, the process generates a significant amount of nondispatchable heat, especially for the case that employs low-temperature electrolyzers. This added generation capacity allows the process to cover the heat demand while decreasing the maximum capacity of the charging side computed herein

    Thermochemical Energy Storage with Integrated District Heat Production—A Case Study of Swede

    Get PDF
    The implementation of electricity-charged thermochemical energy storage (TCES) using high-temperature solid cycles would benefit the energy system by enabling the absorption of variable renewable energy (VRE) and its conversion into dispatchable heat and power. Using a Swedish case study, this paper presents a process for TCES-integrated district heating (DH) production, assesses its technical suitability, and discusses some practical implications and additional implementation options. The mass and energy flows of a biomass plant retrofitted with an iron-based redox loop are calculated for nine specific scenarios that exemplify its operation under electricity generation mixes that differ with respect to variability and price. In addition, the use of two types of electrolyzers (low-temperature and high-temperature versions) is investigated. The results show that for the Swedish case, the proposed scheme is technically feasible and capable of covering the national DH demand by making use of the existing DH plants, with an estimated process energy efficiency (electricity to heat) of 90%. The results also show that for a retrofit of the entire Swedish DH fleet, the required inventories of iron are approximately 2.8 Mt for the intermediate scenario, which represents 0.3% and 11.0% of the national reserves and annual metallurgical production rates of the national industry, respectively. In addition to the dispatchable heat, the process generates a significant amount of nondispatchable heat, especially for the case that employs low-temperature electrolyzers. This added generation capacity allows the process to cover the heat demand while decreasing the maximum capacity of the charging side computed herein

    Dynamics of large-scale bubbling fluidized bed combustion plants for heat and power production

    Get PDF
    This paper presents a dynamic model of bubbling fluidized bed (BFB) units for combined heat and power (CHP) production that results from connecting a model of the gas side with a process model of the water-steam side. The model output is validated by comparison with operational data measured in a 130-MWth BFB plant that produces electricity, district heating (DH) water and steam to industrial clients. The validation shows that the model can satisfactorily describe both multi-load steady-state operation as well as load transients. The validated model is here used to compute the inherent process dynamics of the reference plant. The simulation results highlight the fact that the water-steam cycle reaches stabilization faster after changes in the DH line and steam delivered to clients than to changes in the combustor load. The timescales of the plant outputs for different changes have been computed, with stabilization times ranging between 2 and 15 min for the power production versus 2-25 min characterizing the DH production. When comparing these results with the characteristic times of the gas side, it is concluded that the water-steam side is an order of magnitude slower, i.e., limiting the transient operation capabilities of BFB-CHP plants. This in in contrast to earlier findings for circulating fluidized bed plants, where the characteristic times of both sides are in the same order of magnitude

    Dynamics of large-scale bubbling fluidized bed combustion plants for heat and power production

    Get PDF
    This paper presents a dynamic model of bubbling fluidized bed (BFB) units for combined heat and power (CHP) production that results from connecting a model of the gas side with a process model of the water-steam side. The model output is validated by comparison with operational data measured in a 130-MWth BFB plant that produces electricity, district heating (DH) water and steam to industrial clients. The validation shows that the model can satisfactorily describe both multi-load steady-state operation as well as load transients. The validated model is here used to compute the inherent process dynamics of the reference plant. The simulation results highlight the fact that the water-steam cycle reaches stabilization faster after changes in the DH line and steam delivered to clients than to changes in the combustor load. The timescales of the plant outputs for different changes have been computed, with stabilization times ranging between 2 and 15 min for the power production versus 2-25 min characterizing the DH production. When comparing these results with the characteristic times of the gas side, it is concluded that the water-steam side is an order of magnitude slower, i.e., limiting the transient operation capabilities of BFB-CHP plants. This in in contrast to earlier findings for circulating fluidized bed plants, where the characteristic times of both sides are in the same order of magnitude

    Dynamics of large-scale bubbling fluidized bed combustion plants for heat and power production

    Get PDF
    Bubbling fluidized bed combustion (BFBC) plants for combined heat and power (CHP) production have traditionally been dispatched under slow load changes. As the amount of variable renewable electricity increases in energy systems worldwide, knowledge regarding the transient capabilities of the gas and water-steam sides of BFBC plants is required. The aim of this work is to investigate the dynamic performance of large-scale BFBC plants when accounting for both the gas and water-steam sides. To do so, this paper presents a dynamic model of BFB-CHP plants that result from connecting a model of the gas side to a process model of the water-steam side. The plant model output is validated by comparisons with operational data measured in a 130-MWth\ua0BFBC plant that produces electricity, district heating (DH) water and steam for industrial clients. The validation shows that the model can satisfactorily describe both multi-load steady-state operation and load transients. The simulation results highlight the fact that the water-steam cycle achieves stabilization more rapidly after changes in the DH line and steam delivered to customers, as compared to changes in the combustor load. The timescales of the plant outputs for different changes have been calculated, with stabilization times ranging from 2 to 15\ua0min for the power production versus 2–25\ua0min characterizing the DH production. Compared to the stabilization times of the gas side, the water-steam side is an order of magnitude slower, thereby limiting the transient operation capabilities of BFB-CHP plants

    Dynamics and control of large-scale fluidized bed plants for renewable heat and power generation

    Get PDF
    As the share of variable renewable electricity increases, thermal power plants will have to adapt their operational protocols in order to remain economically competitive while also providing grid-balancing services required to deal with the inherent fluctuations of variable renewable electricity. This work presents a dynamic model of fluidized bed combustion plants for combined heat and power production. The novelty of the work lays in that (i) it provides an analysis of the transient performance of biomass-based fluidized bed combustion plants for combined heat and power production, (ii) the dynamic model includes a description of both the gas and water- steam sides and (iii) the model is validated against operational data acquired from a commercial-scale plant. The validated model is here applied to analyze the inherent dynamics of the investigated plant and to evaluate the performance of the plant when operated under different control and operational strategies, using a relative gain analysis and a variable ramping rate test.The results of the simulations reveal that the inherent dynamics of the process have stabilization times in the range of 5–25 min for all the step changes investigated, with variables connected to district heating production being the slowest. In contrast, variables connected to the live steam are the fastest, with stabilization times of magnitude similar to those of the in-furnace variables (i.e., around 10 min). Thus, it is concluded that the proper description of the dynamics in fluidized bed combustion plants for combined heat and power production requires modeling of both the gas and water sides (which is rare in previous literature). Regarding the assessment of control strategies, the boiler-following and hybrid control (combined fixed live steam and sliding pressure) strategies are found to be able to provide load changes as fast as 5%-unit/s, albeit while causing operational issues such as large pressure overshoots. The relative gain analysis outcomes show that these control structures do not have a steady-state gain on the power produced, and therefore it is the dynamic effect of the steam throttling that triggers the rapid power response. This study also includes the assessment of a turbine bypass strategy, the results of which show that it enables fast load-changing capabilities at constant combustion load, as well as decoupling power and heat production at the expense of thermodynamic losses

    Techno-Economic Assessment of Calcium Looping for Thermochemical Energy Storage with CO2 Capture

    Get PDF
    The cyclic carbonation-calcination of CaCO3 in fluidized bed reactors not only offers a possibility for CO2 capture but can at the same time be implemented for thermochemical energy storage (TCES), a feature which will play an important role in a future that has an increasing share of non-dispatchable variable electricity generation (e.g., from wind and solar power). This paper provides a techno-economic assessment of an industrial-scale calcium looping (CaL) process with simultaneous TCES and CO2 capture. The process is assumed to make profit by selling dispatchable electricity and by providing CO2 capture services to a certain nearby emitter (i.e., transport and storage of CO2 are not accounted). Thus, the process is connected to two other facilities located nearby: a renewable non-dispatchable energy source that charges the storage and a plant from which the CO2 in its flue gas flow is captured while discharging the storage and producing dispatchable electricity. The process, which offers the possibility of long-term storage at ambient temperature without any significant energy loss, is herein sized for a given daily energy input under certain boundary conditions, which mandate that the charging section runs steadily for one 12-h period per day and that the discharging section can provide a steady output during 24 h per day. Intercoupled mass and energy balances of the process are computed for the different process elements, followed by the sizing of the main process equipment, after which the economics of the process are computed through cost functions widely used and validated in literature. The economic viability of the process is assessed through the breakeven electricity price (BESP), payback period (PBP), and as cost per ton of CO2 captured. The cost of the renewable energy is excluded from the study, although its potential impact on the process costs if included in the system is assessed. The sensitivities of the computed costs to the main process and economic parameters are also assessed. The results show that for the most realistic economic projections, the BESP ranges from 141 to −20 /MWhfordifferentplantsizesandalifetimeof20years.Whenthesameprocessisassessedasacarboncapturefacility,ityieldsacostthatrangesfrom45to27/MWh for different plant sizes and a lifetime of 20 years. When the same process is assessed as a carbon capture facility, it yields a cost that ranges from 45 to −27 /tCO2-captured. The cost of investment in the fluidized bed reactors accounts for most of the computed capital expenses, while an increase in the degree of conversion in the carbonator is identified as a technical goal of major importance for reducing the global cost

    CIBERER : Spanish national network for research on rare diseases: A highly productive collaborative initiative

    Get PDF
    Altres ajuts: Instituto de Salud Carlos III (ISCIII); Ministerio de Ciencia e Innovación.CIBER (Center for Biomedical Network Research; Centro de Investigación Biomédica En Red) is a public national consortium created in 2006 under the umbrella of the Spanish National Institute of Health Carlos III (ISCIII). This innovative research structure comprises 11 different specific areas dedicated to the main public health priorities in the National Health System. CIBERER, the thematic area of CIBER focused on rare diseases (RDs) currently consists of 75 research groups belonging to universities, research centers, and hospitals of the entire country. CIBERER's mission is to be a center prioritizing and favoring collaboration and cooperation between biomedical and clinical research groups, with special emphasis on the aspects of genetic, molecular, biochemical, and cellular research of RDs. This research is the basis for providing new tools for the diagnosis and therapy of low-prevalence diseases, in line with the International Rare Diseases Research Consortium (IRDiRC) objectives, thus favoring translational research between the scientific environment of the laboratory and the clinical setting of health centers. In this article, we intend to review CIBERER's 15-year journey and summarize the main results obtained in terms of internationalization, scientific production, contributions toward the discovery of new therapies and novel genes associated to diseases, cooperation with patients' associations and many other topics related to RD research
    corecore