216 research outputs found

    Hierarchical growing neural gas

    Get PDF
    “The original publication is available at www.springerlink.com”. Copyright Springer.This paper describes TreeGNG, a top-down unsupervised learning method that produces hierarchical classification schemes. TreeGNG is an extension to the Growing Neural Gas algorithm that maintains a time history of the learned topological mapping. TreeGNG is able to correct poor decisions made during the early phases of the construction of the tree, and provides the novel ability to influence the general shape and form of the learned hierarchy

    Investigation of topographical stability of the concave and convex Self-Organizing Map variant

    Get PDF
    We investigate, by a systematic numerical study, the parameter dependence of the stability of the Kohonen Self-Organizing Map and the Zheng and Greenleaf concave and convex learning with respect to different input distributions, input and output dimensions

    Region of Interest Growing Neural Gas for Real-Time Point Cloud Processing

    Get PDF
    This paper proposes a real-time topological structure learning method based on concentrated/distributed sensing for a 2D/3D point cloud. First of all, we explain a modified Growing Neural Gas with Utility (GNG-U2) that can learn the topological structure of 3D space environment and color information simultaneously by using a weight vector. Next, we propose a Region Of Interest Growing Neural Gas (ROI-GNG) for realizing concentrated/distributed sensing in real-time. In ROI-GNG, the discount rates of the accumulated error and utility value are variable according to the situation. We show experimental results of the proposed method and discuss the effectiveness of the proposed method

    A Multi-signal Variant for the GPU-based Parallelization of Growing Self-Organizing Networks

    Full text link
    Among the many possible approaches for the parallelization of self-organizing networks, and in particular of growing self-organizing networks, perhaps the most common one is producing an optimized, parallel implementation of the standard sequential algorithms reported in the literature. In this paper we explore an alternative approach, based on a new algorithm variant specifically designed to match the features of the large-scale, fine-grained parallelism of GPUs, in which multiple input signals are processed at once. Comparative tests have been performed, using both parallel and sequential implementations of the new algorithm variant, in particular for a growing self-organizing network that reconstructs surfaces from point clouds. The experimental results show that this approach allows harnessing in a more effective way the intrinsic parallelism that the self-organizing networks algorithms seem intuitively to suggest, obtaining better performances even with networks of smaller size.Comment: 17 page
    • …
    corecore