1,931 research outputs found

    First observation of Cherenkov rings with a large area CsI-TGEM-based RICH prototype

    Full text link
    We have built a RICH detector prototype consisting of a liquid C6F14 radiator and six triple Thick Gaseous Electron Multipliers (TGEMs), each of them having an active area of 10x10 cm2. One triple TGEM has been placed behind the liquid radiator in order to detect the beam particles, whereas the other five have been positioned around the central one at a distance to collect the Cherenkov photons. The upstream electrode of each of the TGEM stacks has been coated with a 0.4 micron thick CsI layer. In this paper, we will present the results from a series of laboratory tests with this prototype carried out using UV light, 6 keV photons from 55Fe and electrons from 90Sr as well as recent results of tests with a beam of charged pions where for the first time Cherenkov Ring images have been successfully recorded with TGEM photodetectors. The achieved results prove the feasibility of building a large area Cherenkov detector consisting of a matrix of TGEMs.Comment: Presented at the International Conference NDIP-11, Lyon,July201

    Evaluating potential artifacts of tethering techniques to estimate predation on sea urchins

    Get PDF
    Measuring the strength of trophic interactions in marine systems has been central to our understanding of community structuring. Sea urchin tethering has been the method of choice to evaluate rates of predation in marine benthic ecosystems. As standardly practiced, this method involves piercing the urchin test, potentially introducing significant methodological artifacts that may influence survival or detection by predators. Here we assess possible artifacts of tethering comparing invasive (pierced) and non-invasive tethering techniques using the sea urchin Paracentrotus lividus. Specifically we looked at how degree of confinement and high water temperature (first order artifacts), and predator guild and size of the prey (second order artifacts) affect the survival and/or detectability of pierced urchins. Our results show that first order artifacts only arise when pierced sea urchins are placed in sheltered bays with confined waters, especially when water temperature reaches extremely high levels. Prey detectability did not increase in pierced sea urchins for the most common predators. Also, test piercing did not alter the preferences of predators for given prey sizes. We conclude that the standard tethering technique is a robust method to test relative rates of sea urchin predation. However, local conditions could increase mortality of the tethered urchin in sheltered bays or in very high temperature regimes. Under these conditions adequate pierced controls (within predator exclusions) need to be included in assays to evaluate artifactual sources of mortality

    VHMPID: a new detector for the ALICE experiment at LHC

    Full text link
    This article presents the basic idea of VHMPID, an upgrade detector for the ALICE experiment at LHC, CERN. The main goal of this detector is to extend the particle identification capabilities of ALICE to give more insight into the evolution of the hot and dense matter created in Pb-Pb collisions. Starting from the physics motivations and working principles the challenges and current status of development is detailed.Comment: 4 pages, 6 figures. To be published in EPJ Web of Conference

    Development and first tests of GEM-like detectors with resistive electrodes

    Get PDF
    We have developed and tested several prototypes of GEM-like detectors with electrodes coated with resistive layers or completely made of resistive materials. These detectors can operate stably at gains close to 105. The resistive layers limit the energy of discharges appearing at higher gains thus making the detectors very robust. We demonstrated that the cathodes of some of these detectors could be coated by CsI or SbCs layers to enhance the detection efficiency for the UV and visible photons. We also discovered that such detectors can operate stably in the cascade mode and high overall gains ( 106~10^{6}) are reachable. Applications in several areas, for example in RICH or in noble liquid TPCs are therefore possible. The first results from the detection of UV photons at room and cryogenic temperatures will be given

    The Development of Sealed UV Sensitive Gaseous Detectors and their Applications

    Get PDF
    We have developed commercial prototypes of sealed gaseous detectors combined with CsI photocathodes and/or filled with photosensitive vapors. The rirst results of application of these devices for the detection of flames in daylight conditions and for the detection of scintillation lights from noble liquids will be presented. The main conclusion from our studies is that for some applications the sealed UV sensitive gaseous detectors have superior performance (higher practical quantum efficiency and better signal to noise ratio) than existing commercial UV sensitive detectors. Additionally, they are much cheaper.Comment: Presented at the Pisa Meeting "Frontier Detectors for Frontier Physics", May 200

    Development of innovative micropattern gaseous detectors with resistive electrodes and first results of their applications

    Full text link
    The paper summarizes our latest progress in the development of newly introduced micro pattern gaseous detectors with resistive electrodes. These resistive electrodes protect the detector and the front-end electronics in case of occasional discharges and thus make the detectors very robust and reliable in operation. As an example, we describe in greater detail a new recently developed GEM-like detector, fully spark-protected with electrodes made of resistive kapton. We discovered that all resistive layers used in these studies (including kapton), that are coated with photosensitive layers, such as CsI, can be used as efficient photo cathodes for detectors operating in a pulse counting mode. We describe the first applications of such detectors combined with CsI or SbCs photo cathodes for the detection of UV photons at room and cryogenic temperatures.Comment: Presented at the 11 Vienna Conference on Instrumentation, February, 200

    Semicosimplicial DGLAs in deformation theory

    Full text link
    We identify Cech cocycles in nonabelian (formal) group cohomology with Maurer-Cartan elements in a suitable L-infinity algebra. Applications to deformation theory are described.Comment: Largely rewritten. Abstract modified. 15 pages, Latex, uses xy-pi
    • …
    corecore