23 research outputs found

    A maternal erythrocyte DHA content of approximately 6 g% is the DHA status at which intrauterine DHA biomagnifications turns into bioattenuation and postnatal infant DHA equilibrium isreached

    Get PDF
    PURPOSE: Higher long-chain polyunsaturated fatty acids (LCP) in infant compared with maternal lipids at delivery is named biomagnification. The decline of infant and maternal docosahexaenoic acid (DHA) status during lactation in Western countries suggests maternal depletion. We investigated whether biomagnification persists at lifelong high fish intakes and whether the latter prevents a postpartum decline of infant and/or maternal DHA status. METHODS: We studied 3 Tanzanian tribes with low (Maasai: 0/week), intermediate (Pare: 2–3/week), and high (Sengerema: 4–5/week) fish intakes. DHA and arachidonic acid (AA) were determined in maternal (m) and infant (i) erythrocytes (RBC) during pregnancy (1st trimester n = 14, 2nd = 103, 3rd = 88), and in mother–infant pairs at delivery (n = 63) and at 3 months postpartum (n = 104). RESULTS: At delivery, infants of all tribes had similar iRBC-AA which was higher than, and unrelated to, mRBC-AA. Transplacental DHA biomagnification occurred up to 5.6 g% mRBC-DHA; higher mRBC-DHA was associated with “bioattenuation” (i.e., iRBC-DHA < mRBC-DHA). Compared to delivery, mRBC-AA after 3 months was higher, while iRBC-AA was lower. mRBC-DHA after 3 months was lower, while iRBC-DHA was lower (low fish intake), equal (intermediate fish intake), and higher (high fish intake) compared to delivery. We estimated that postpartum iRBC-DHA equilibrium is reached at 5.9 g%, which corresponds to a mRBC-DHA of 6.1 g% throughout pregnancy. CONCLUSION: Uniform high iRBC-AA at delivery might indicate the importance of intrauterine infant AA status. Biomagnification reflects low maternal DHA status, and bioattenuation may prevent intrauterine competition of DHA with AA. A mRBC-DHA of about 6 g% during pregnancy predicts maternal–fetal equilibrium at delivery, postnatal iRBC-DHA equilibrium, but is unable to prevent a postnatal mRBC-DHA decline

    Traditionally living populations in East Africa have a mean serum 25-hydroxyvitamin D concentration of 115 nmol/l

    Get PDF
    Cutaneous synthesis of vitamin D by exposure to UVB is the principal source of vitamin D in the human body. Our current clothing habits and reduced time spent outdoors put us at risk of many insufficiency-related diseases that are associated with calcaemic and non-calcaemic functions of vitamin D. Populations with traditional lifestyles having lifelong, year-round exposure to tropical sunlight might provide us with information on optimal vitamin D status from an evolutionary perspective. We measured the sum of serum 25-hydroxyvitamin D-2 and D-3 (25(OH) D) concentrations of thirty-five pastoral Maasai (34 (SD 10) years, 43% male) and twenty-five Hadzabe hunter-gatherers (35 (SD 12) years, 84% male) living in Tanzania. They have skin type VI, have a moderate degree of clothing, spend the major part of the day outdoors, but avoid direct exposure to sunlight when possible. Their 25(OH) D concentrations were measured by liquid chromatography-MS/MS. The mean serum 25(OH) D concentrations of Maasai and Hadzabe were 119 (range 58-167) and 109 (range 71-171) nmol/l, respectively. These concentrations were not related to age, sex or BMI. People with traditional lifestyles, living in the cradle of mankind, have a mean circulating 25(OH) D concentration of 115 nmol/l. Whether this concentration is optimal under the conditions of the current Western lifestyle is uncertain, and should as a possible target be investigated with concomitant appreciation of other important factors in Ca homeostasis that we have changed since the agricultural revolution

    Interrelationships between maternal DHA in erythrocytes, milk and adipose tissue. Is 1wt% DHA the optimal human milk content? Data from four Tanzanian tribes differing in lifetime stable intakes of fish

    Get PDF
    Little is known about the interrelationships between maternal and infant erythrocyte-DHA, milk-DHA and maternal adipose tissue (AT)-DHA contents. We studied these relationships in four tribes in Tanzania (Maasai, Pare, Sengerema and Ukerewe) differing in their lifetime intakes of fish. Cross-sectional samples were collected at delivery and after 3 d and 3 months of exclusive breast-feeding. We found that intra-uterine biomagnification is a sign of low maternal DHA status, that genuine biomagnification occurs during lactation, that lactating mothers with low DHA status cannot augment their infants' DHA status, and that lactating mothers lose DHA independent of their DHA status. A maternal erythrocyte-DHA content of 8 wt% was found to correspond with a mature milk-DHA content of 1.0 wt% and with subcutaneous and abdominal (omentum) AT-DHA contents of about 0.39 and 0.52 wt%, respectively. Consequently, 1 wt% DHA might be a target for Western human milk and infant formula that has milk arachidonic acid, EPA and linoleic acid contents of 0.55, 0.22 and 9.32 wt%, respectively. With increasing DHA status, the erythrocyte-DHA content reaches a plateau of about 9 wt%, and it plateaus more readily than milk-DHA and AT-DHA contents. Compared with the average Tanzanian-Ukerewe woman, the average US woman has four times lower AT-DHA content (0.4 v. 0.1 wt%) and five times lower mature milk-DHA output (301 v. 60 mg/d), which contrasts with her estimated 1.8-2.6 times lower mobilisable AT-DHA content (19 v. 35-50g

    Intrauterine, postpartum and adult relationships between arachidonic acid (AA) and docosahexaenoic acid (DHA)

    Get PDF
    AbstractErythrocyte (RBC) fatty acid compositions from populations with stable dietary habits but large variations in RBC-arachidonic (AA) and RBC-docosahexaenoic acid (DHA) provided us with insight into relationships between DHA and AA. It also enabled us to estimate the maternal RBC-DHA (mRBC-DHA) status that corresponded with no decrease in mRBC-DHA during pregnancy, or in infant (i) RBC-DHA or mRBC-DHA during the first 3 months postpartum (DHA-equilibrium) while exclusively breastfeeding. At delivery, iRBC-AA is uniformly high and independent of mRBC-AA. Infants born to mothers with low RBC-DHA exhibit higher, but infants born to mothers with high RBC-DHA exhibit lower RBC-DHA than their mothers. This switch from ‘biomagnification’ into ‘bioattenuation’ occurs at 6g% mRBC-DHA. At 6g%, mRBC-DHA is stable throughout pregnancy, corresponds with postpartum infant DHA-equilibrium of 6 and 0.4g% DHA in mature milk, but results in postpartum depletion of mRBC-DHA to 5g%. Postpartum maternal DHA-equilibrium is reached at 8g% mRBC-DHA, corresponding with 1g% DHA in mature milk and 7g% iRBC-DHA at delivery that increases to 8g% during lactation. This 8g% RBC-DHA concurs with the lowest risks of cardiovascular and psychiatric diseases in adults. RBC-data from 1866 infants, males and (non-)pregnant females indicated AA vs. DHA synergism at low RBC-DHA, but antagonism at high RBC-DHA. These data, together with high intakes of AA and DHA from our Paleolithic diet, suggest that bioattenuation of DHA during pregnancy and postnatal antagonism between AA and DHA are the physiological standard for humans across the life cycle

    Differences in preterm and term milk fatty acid compositions may be caused by the different hormonal milieu of early parturition

    No full text
    Introduction: The hormonal milieus of pregnancy and lactation are driving forces of nutrient fluxes supporting infant growth and development. The decrease of insulin sensitivity with compensatory hyperinsulinemia with advancing gestation, causes adipose tissue lipolysis and hepatic de novo lipogenesis (DNL). Subjects and methods: We compared fatty acid (FA) contents and FA-indices for enzyme activities between preterm (28-36 weeks) and term (37-42) milks, and between colostrum (2-5 days), transitional (6-15) and mature (16-56) milks. We interpreted FA differences between preterm and term milks, and their changes with lactation, in terms of the well known decrease of insulin sensitivity during gestation and its subsequent postpartum restoration, respectively. Results: Compared with term colostrum, preterm colostrum contained higher indices of DNL in the breast (DNL-breast) and medium chain saturated-FA (MCSAFA), and lower DNL-liver and monounsaturated-FA (MUFA). Preterm milk also had higher docosahexaenoic acid (DHA) in colostrum and transitional milk and higher arachidonic acid (AA) in mature milk. Most preterm-term differences vanished with advancing lactation. In both preterm and term milks, DNL-breast and MCSAFA increased with advancing lactation, while DNL-liver, MUFA, long chain SAFA and AA decreased. DHA decreased in term milk. MUFA was inversely related to MCSAFA in all samples, correlated inversely with PUFA in colostrum and transitional milks, but positively in mature milk. MCSAFA correlated inversely with PUFA in mature milk. Conclusion: Higher maternal insulin sensitivity at preterm birth may be the cause of lower MUFA (a proxy for DNL-liver) and higher MCSAFA (a proxy for DNL-breast) in preterm colostrum, compared with term colostrum. Restoring insulin sensitivity after delivery may be an important driving force for milk FA-changes in early lactation. (C) 2011 Elsevier Ltd. All rights reserved

    Fatty acid compositions of preterm and term colostrum, transitional and mature milks in a sub-Saharan population with high fish intakes

    No full text
    Background: There are no data on the fatty acid (FA) compositions of preterm and term milks for sub-Saharan African populations with advancing lactation. However, it is generally acknowledged that our ancestors evolved in sub-Saharan East-Africa, where they inhabited the land-water ecosystems. Methods: We compared the FA-compositions of preterm (28-36 weeks) and term (37-42) colostrum (2-5 day), transitional (6-15) and mature (16-56) milks in rural African women with stable dietary habits and lifelong high freshwater fish intakes. Results: From colostrum to mature milk: the median docosahexaenoic acid (DHA) content decreased from 1.11 to 0.75; and arachidonic acid (AA) from 0.93 to 0.69 g% in preterm milk. In term milk, DHA decreased from 0.81 to 0.53 and AA from 1.08 to 0.55 g%. Medium-chain saturated-FA (MCSAFA) increased from 16.9 to 33.7, and 7.92-29.0 g%, while mono-unsaturated FA (MUFA) decreased from 32.5 to 22.6, and 40.0-26.5 g%, in preterm and term milk, respectively. Consistent with the literature, preterm colostrum contained higher DHA and MCSAFA, and lower MUFA compared to term colostrum. These differences vanished rapidly with advancing lactation. MUFA and MCSAFA were inversely related. Conclusions: The presently found DHA in preterm colostrum and mature milks and M in premature mature milk proved the highest reported in the literature so far, as derived from analysis with capillary GC-columns. We confirmed the much higher MCSAFA and lower MUFA contents in milk of rural African, compared to Westernized women. The milk FA composition of this traditional population might show us the FA composition on which our species evolved and consequently to which our genome has become adapted to optimally support (infant) health. (C) 2012 Elsevier Ltd. All rights reserved

    Postdelivery changes in maternal and infant erythrocyte fatty acids in 3 populations differing in fresh water fish intakes

    No full text
    Introduction: Long-chain polyunsaturated (LCP) fatty acids (FA) are important during infant development. Mother-to-infant FA-transport occurs at the expense of the maternal status. Maternal and infant FA-status change rapidly after delivery. Methods: Comparison of maternal (mRBC) and infant erythrocyte (iRBC)-FA-profiles at delivery and after 3 months exclusive breastfeeding in relation to freshwater-fish intakes. Approximation of de-novo-lipogenesis (DNL), stearoyl-CoA-desaturase (SCD), elongation-of-very-long-chain-FA-family-member-6 (Elovl-6), delta-5-desaturase (D5D) and delta-6-desaturase (D6D)-enzymatic activities from their product/essential-FA and product/substrate-ratios. Results and discussion: Increasing iRBC-14:0 derived from mammary-gland DNL. Decreasing mRBC-omega 9, but increasing iRBC-omega 9, suggest high omega 9-FA-transfer via breastmilk. Decreasing (m+i)RBC-16:0, DNL- and SCD-activities, but increasing (m+i)RBC-18:0 and Elovl-6-activity suggest more pronounced postpartum decreases in DNL- and SCD-activities, compared to Elovl-6-activity. Increasing (m+i)RBC-18:3 omega 3, 20:5 omega 3, 22:5 omega 3, 18:2 omega 6, mRBC-20:4 omega 6 and (m+i)D5D-activity, but decreasing mRBC-22:omega 3 and (m+i)D6D-activity and dose-dependent changes in iRBC-22:6 omega 3 confirm that D6D-activity is rate-limiting and 22:6 omega 3 is important during lactation. Fish-intake related magnitudes of postpartum FA-changes suggest that LCP omega 3 influence DNL-, SCD- and desaturase-activities. (C) 2011 Elsevier Ltd. All rights reserved

    Fetal intrauterine whole body linoleic, arachidonic and docosahexaenoic acid contents and accretion rates

    No full text
    Introduction: There is no information on the whole body fatty acid (FA) contents of preterm or term infants, although scattered information on the FA-composition of many organs is available. Material and methods: We collected data on the weights, lipid contents and FA-compositions of the quantitatively most important fetal organs of appropriate for gestational age (AGA) Western infants. From these we estimated the total body contents of linoleic (LA), arachidonic (M) and docosahexaenoic (DHA) acids at 25, 35 and 40 weeks of gestation. Results: Western infants accrete FA in the order of IA > AA > DHA at all stages during pregnancy and the highest accretion rates are reached in the last 5 weeks of gestation, i.e. 342 mg LA, 95 mg AA and 42 mg DHA/day. At term, most of the infant's LA, AA and DHA is located in adipose tissue (68, 44 and 50%, respectively), with substantial amounts of LA also located in skeletal muscle (17%) and skin (13%); of AA in skeletal muscle (40%) and brain (11%); and of DHA in brain (23%) and skeletal muscle (21%). The term AGA infant has accreted about 21 g LA, 7.5 g AA and 3 g DHA, which constitutes a gap of 12 g LA, 3.3 g AA and 1.5 g DHA compared to a 35 weeks old AGA infant. Conclusion: The current fetal LA. AA and DHA pool sizes and accretion rates may especially be useful to estimate the preterm infant's requirements and the maternal LCP needs during pregnancy. Since they derive from populations with typically Western diets they do not necessarily reflect 'optimality' or 'health'. (C) 2011 Elsevier Ltd. All rights reserved

    Gestational age dependent changes of the fetal brain, liver and adipose tissue fatty acid compositions in a population with high fish intakes

    No full text
    Introduction: There are no data on the intrauterine fatty acid (FA) compositions of brain, liver and adipose tissue of infants born to women with high fish intakes. Subjects and methods: We analyzed the brain (n = 18), liver (n = 14) and adipose tissue (n = 11) FA compositions of 20 stillborn infants with different gestational ages (range 8-38 weeks) born to Tanzanian women with low linoleic acid (LA) intakes and high intakes of docosahexaenoic (DHA) and arachidonic (AA) acids from local fish. Results and discussion: With advancing gestation, brain saturated-FA (SAFA; in g/100 g FA), polyunsaturated-FA (PUFA), DHA, 20:3 omega 6, 22:4 omega 6 and 22:5 omega 6 increased, while monounsaturated-FA (MUFA), 20:3 omega 9, 22:3 omega 9 and AA decreased. Decreasing brain AA might be caused by increasing AA-metabolism to 20:3 omega 6, 22:4 omega 6 and 22:5 omega 6. In the liver, SAFA, PUFA and LA increased, while MUFA decreased with gestation. The steep increase of (mostly de novo synthesized) SAFA in adipose tissue coincided with relative decreases of MUFA, PUFA, DHA, LA and AA with advancing gestation. Compared to Western infants, the currently studied African infants had higher DHA, lower AA, and a higher DHA/AA-ratio in brain and adipose tissue, while the LA content of adipose tissue was lower. Conclusion: The low LA and high DHA and AA intakes by the mothers of these infants might support optimal alpha-linolenic (ALA) vs. LA competition for Delta 5D and Delta 6D-activities and DHA vs. AA antagonism. Conversely, the Western diet, characterized by high LA and lower DHA and AA intakes, might disturb these evolutionary conserved mechanisms aiming at an optimal omega 3/omega 6-balance. (C) 2012 Elsevier Ltd. All rights reserved
    corecore