19 research outputs found

    The effects of hypoxia on zooplankton population estimates and migration in lakes

    Get PDF
    Many zooplankton species typically exhibit diel vertical migration (DVM), where zooplankton migrate from the hypolimnion to the epilimnion of lakes at night. Zooplankton exhibit this behavior to avoid visual predators and UV radiation by remaining in the bottom waters during the day and ascending to the surface waters to feed on phytoplankton at night. However, hypoxic conditions in the hypolimnion of lakes mayinterfere with DVM and force zooplankton to increase diel horizontal migration (DHM) to find predation refuge in littoral zones. Climate change and eutrophication are expected to increase the prevalence and severity of hypoxic conditions worldwide and thereby possibly alter zooplankton migration patterns. We hypothesize that hypoxia will force zooplankton to shift their migration patterns from predominantly DVM to DHM to avoid oxygen-depleted bottom waters. To test our hypothesis, we are conducting a standardized global sampling program to test whether pelagic, full water column estimates of zooplankton are greater at night versus the day under hypolimnetic hypoxic versus oxic conditions. Participants are aiming to sample at least one lake with an oxic hypolimnion and one lake with a hypoxic hypolimnion during the thermally-stratified period at midday and midnight. With our global dataset (currently expecting about 60 lakes in 22 countries), our goal is to improve our understanding of how global change may alter zooplankton migration behavior and patterns in lakes.info:eu-repo/semantics/publishedVersio

    Scientists’ Warning to Humanity: Rapid degradation of the world\u27s large lakes

    Get PDF
    Large lakes of the world are habitats for diverse species, including endemic taxa, and are valuable resources that provide humanity with many ecosystem services. They are also sentinels of global and local change, and recent studies in limnology and paleolimnology have demonstrated disturbing evidence of their collective degradation in terms of depletion of resources (water and food), rapid warming and loss of ice, destruction of habitats and ecosystems, loss of species, and accelerating pollution. Large lakes are particularly exposed to anthropogenic and climatic stressors. The Second Warning to Humanity provides a framework to assess the dangers now threatening the world\u27s large lake ecosystems and to evaluate pathways of sustainable development that are more respectful of their ongoing provision of services. Here we review current and emerging threats to the large lakes of the world, including iconic examples of lake management failures and successes, from which we identify priorities and approaches for future conservation efforts. The review underscores the extent of lake resource degradation, which is a result of cumulative perturbation through time by long-term human impacts combined with other emerging stressors. Decades of degradation of large lakes have resulted in major challenges for restoration and management and a legacy of ecological and economic costs for future generations. Large lakes will require more intense conservation efforts in a warmer, increasingly populated world to achieve sustainable, high-quality waters. This Warning to Humanity is also an opportunity to highlight the value of a long-term lake observatory network to monitor and report on environmental changes in large lake ecosystems

    Interspecific Relationship and Ecological Requirements of Two Potentially Harmful Cyanobacteria in a Deep South-Alpine Lake (L. Iseo, I)

    No full text
    In Lake Iseo (Lombardia, Italy), the predominant species in the cyanobacterial taxa was Planktothrix rubescens. However, since 2014, the presence of an allochthonous Cyanobacteria, Tychonema bourrellyi, able to produce consistent biomasses and harmful toxins, was detected. The causes of this expansion are poorly understood. Many studies have linked the development of allochthonous Cyanobacteria populations with climate change. This study shows the spatio-temporal dynamics, the ecological requirements, and the interspecific relationship of P. rubescens and T. bourrellyi. Samples were collected monthly in 2016 at six different depths in the water column; 20 chemico-physical characteristics were measured; and Cyanobacteria density, morphology, and biovolume were evaluated. The results allowed a comparison of the spatial pattern of the two species, which showed a greater distribution at a depth of 10–20 m, and their seasonal dynamics. Both Cyanobacteria were present throughout the year, with the greatest abundance during the period from March to May. A temporal shift was observed in their development, linked to different capacities for overcoming winter and mixing periods. Principal Component Analysis, performed on 20 observations (4 months × 5 depths), highlighted the important role of the stability of the water column in determining T. bourrellyi settlement in Lake Iseo and the role of solar radiation in spring population development

    Ammonium Transformation in 14 Lakes along a Trophic Gradient

    No full text
    Ammonia is a widespread pollutant in aquatic ecosystems originating directly and indirectly from human activities, which can strongly affect the structure and functioning of the aquatic foodweb. The biological oxidation of NH4+ to nitrite, and then nitrate is a key part of the complex nitrogen cycle and a fundamental process in aquatic environments, having a profound influence on ecosystem stability and functionality. Environmental studies have shown that our current knowledge of physical and chemical factors that control this process and the abundance and function of involved microorganisms are not entirely understood. In this paper, the efficiency and the transformation velocity of ammonium into oxidised compounds in 14 south-alpine lakes in northern Italy, with a similar origin, but different trophic levels, are compared with lab-scale experimentations (20 °C, dark, oxygen saturation) that are performed in artificial microcosms (4 L). The water samples were collected in different months to highlight the possible effect of seasonality on the development of the ammonium oxidation process. In four-liter microcosms, concentrations were increased by 1 mg/L NH4+ and the process of ammonium oxidation was constantly monitored. The time elapsed for the decrease of 25% and 95% of the initial ion ammonium concentration and the rate for that ammonium oxidation were evaluated. Principal Component Analysis and General Linear Model, performed on 56 observations and several chemical and physical parameters, highlighted the important roles of total phosphorus and nitrogen concentrations on the commencement of the oxidation process. Meanwhile, the natural concentration of ammonium influenced the rate of nitrification (µg NH4+/L day). Seasonality did not seem to significantly affect the ammonium transformation. The results highlight the different vulnerabilities of lakes with different trophic statuses

    An Atmospheric Pressure Plasma Jet to Tune the Bioactive Peptide Coupling to Polycaprolactone Electrospun layers

    No full text
    The surface chemistry of scaffolds for tissue regeneration can guide cells growth. In this study, we present a novel method to functionalize electrospun Polycaprolactone (PCL) scaffolds allowing the tuning of biomolecule superficial concentration by varying only one process parameter. The method is based on the deposition of NH2 functional groups starting form (3-Aminopropyl) triethoxysilane (APTES) as precursor by a novel Atmospheric Pressure Plasma Jet (APPJ) and by a successive selective covalent linking of these amines with a synthetic Human Vitronectin adhesive cue (HVP). The addition, in the peptide C-terminus, of an aldehyde group ensures the selective ligation by alkylimino-de-oxo-bisubstitution between the primary amine and HVP. By this method, we managed to alter the HVP surface concentration just varying the deposition time of the plasma process; this resulted in different surface coverage of the plasma coating, which in turn led to diverse amount of linked HVP. Coating stability, morphology and coverage was assessed by infrared and photo-electron spectroscopies and by electron microscopy. As a function of the coverage a variation on peptide concentration was revealed by Total Nitrogen method and confirmed by biological assays, which demonstrated an increase of human osteoblasts viability as a function of peptide concentration
    corecore