4 research outputs found

    Least Mean Squares and Recursive Least Squares Algorithms for Total Harmonic Distortion Reduction Using Shunt Active Power Filter Control

    Get PDF
    This paper deals with the use of least mean squares (LMS, NLMS) and recursive least squares (RLS) algorithms for total harmonic distortion (THD) reduction using shunt active power filter (SAPF) control. The article presents a pilot study necessary for the construction of our own controlled adaptive modular inverter. The objective of the study is to find an optimal algorithm for the implementation. The introduction contains a survey of the literature and summarizes contemporary methods. According to this research, only adaptive filtration fulfills our requirements (adaptability, real-time processing, etc.). The primary benefit of the paper is the study of the efficiency of two basic approaches to adaptation ((N)LMS and RLS) in the application area of SAPF control. The study examines the impact of parameter settings (filter length, convergence constant, forgetting factor) on THD, signal-to-noise ratio (SNR), root mean square error (RMSE), percentage root mean square difference (PRD), speed, and stability. The experiments are realized with real current and voltage recordings (consumer electronics such as PC source without power factor correction (PFC), HI-FI amplifier, etc.), which contain fast dynamic transient phenomena. The realized model takes into account a delay caused by digital signal processing (DSP) (the implementation of algorithms on field programmable gate array (FPGA), approximately 1–5 μs) and a delay caused by the reaction time of the proper inverter (approximately 100 μs). The pilot study clearly showed that the RLS algorithm is the most suitable for the implementation of an adaptive modular inverter because it achieved the best results for all analyzed parameters

    Multichannel ballistocardiography: A comparative analysis of heartbeat detection across different body locations.

    No full text
    The paper presents a validation of novel multichannel ballistocardiography (BCG) measuring system, enabling heartbeat detection from information about movements during myocardial contraction and dilatation of arteries due to blood expulsion. The proposed methology includes novel sensory system and signal processing procedure based on Wavelet transform and Hilbert transform. Because there are no existing recommendations for BCG sensor placement, the study focuses on investigation of BCG signal quality measured from eight different locations within the subject's body. The analysis of BCG signals is primarily based on heart rate (HR) calculation, for which a J-wave detection based on decision-making processes was used. Evaluation of the proposed system was made by comparing with electrocardiography (ECG) as a gold standard, when the averaged signal from all sensors reached HR detection sensitivity higher than 95% and two sensors showed a significant difference from ECG measurement

    Longitudinal analysis of T2 relaxation time variations following radiotherapy for prostate cancer

    No full text
    Aim of this paper is to evaluate short and long-term changes in T2 relaxation times after radiotherapy in patients with low and intermediate risk localized prostate cancer. A total of 24 patients were selected for this retrospective study. Each participant underwent 1.5T magnetic resonance imaging on seven separate occasions: initially after the implantation of gold fiducials, the required step for Cyberknife therapy guidance, followed by MRI scans two weeks post-therapy and monthly thereafter. As part of each MRI scan, the prostate region was manually delineated, and the T2 relaxation times were calculated for quantitative analysis. The T2 relaxation times between individual follow-ups were analyzed using Repeated Measures Analysis of Variance that revealed a significant difference across all measurements (F (6, 120) = 0.611, p << 0.001). A Bonferroni post hoc test revealed significant differences in median T2 values between the baseline and subsequent measurements, particularly between pre-therapy (M0) and two weeks post-therapy (M1), as well as during the monthly interval checks (M2 - M6). Some cases showed a delayed decrease in relaxation times, indicating the prolonged effects of therapy. The changes in T2 values during the course of radiotherapy can help in monitoring radiotherapy response in unconfirmed patients, quantifying the scarring process, and recognizing the therapy failure
    corecore