10 research outputs found

    Molekulare Anpassungen an der aktiven Zone der Photorezeptor-Bandsynapsen

    No full text
    Chemische Synapsen setzen sich aus der PrĂ€- und der Postsynapse zusammen, die jeweils durch ihre einzigartigen Proteinausstattungen strukturell und funktionell charakterisiert sind. An der aktiven Zone der PrĂ€synapse findet die AusschĂŒttung der Transmitter-gefĂŒllten synaptischen Vesikel statt. Dieser Bereich wird durch ein dichtes Netzwerk aus Proteinen, die Cytomatrix an der aktiven Zone (CAZ), definiert. WĂ€hrend konventionelle chemische Synapsen ĂŒber eine zweidimensional organisierte aktive Zone verfĂŒgen, hat sich in den Bandsynapsen sensorischer Neurone ein prĂ€synaptisches Organell, das synaptische Band, entwickelt, das eine dreidimensionale Erweiterung der aktiven Zone darstellt. Beide Synapsentypen unterscheiden sich neben der Morphologie auch funktionell in ihren Freisetzungseigenschaften: WĂ€hrend konventionelle chemisches Synapsen auf ein Aktionspotential mit einer phasischen Neurotransmitter-AusschĂŒttung reagieren, zeigen Bandsynapsen eine tonische AusschĂŒttung mit einer Anpassung der Freisetzungsrate an variierende Membranpotentiale. Bislang ist völlig unklar, welche Mechanismen dieser unterschiedlichen Funktion zugrunde liegen. Wie publizierte Daten und die Ergebnisse meiner Doktorarbeit zeigen, liegt der Grund hierfĂŒr aber nicht in einer komplett unterschiedlichen molekularen Zusammensetzung der aktiven Zone der Bandsynapse. An der Bandsynapse konnten annĂ€hernd alle Proteinfamilien gefunden werden, die auch schon fĂŒr die konventionelle chemische Synapse bekannt waren. Es wird inzwischen angenommen, dass die funktionellen Unterschiede der beiden Synapsentypen durch unterschiedlich exprimierte Varianten der synaptischen Proteine zustande kommen, was bereits fĂŒr einige Proteinfamilien bestĂ€tigt werden konnte. In dieser Arbeit wurden zwei von konventionellen Synapsen bekannte und an der Bandsynapse ebenfalls vorkommende Proteine hinsichtlich ihrer Expression und Funktion an der Photorezeptor-Bandsynapse analysiert. Ein Teil der Arbeit befasste sich mit der Untersuchung der Familie der RIM-Proteine, von der bislang zwei Mitglieder, RIM1 und RIM2, am synaptischen Band selbst (RIM1) oder an der arciformen Dichte (RIM2) beschrieben wurden. Im Gegensatz zu den bisher publizierten Daten konnte ich zeigen, dass RIM1 weder auf Transkript- noch auf Proteinebene an der Photorezeptor-Bandsynapse zu finden ist. Als einzige lange RIM-Variante konnte ich RIM2α an der Photorezeptor-Bandsynapse nachweisen und seine Lokalisation an der arciformen Dichte bestĂ€tigen. Überraschenderweise hatte aber der RIM2α-Knockout nur geringe Auswirkungen auf die Struktur und Funktion der Photorezeptor-Bandsynapse. Der Grund könnte eine neue, kĂŒrzere RIM2α-Spleißvariante sein, die ich in meiner Arbeit gefunden habe und die von der angewandten Knockout-Strategie nicht betroffen war. Diese kurze RIM2α-Variante, RIM2αΔEx2-5, wird N-terminal alternativ gespleißt und geht vom RIM2α-spezifischen Exon 1 direkt auf Exon 6 ĂŒber. RIM2αΔEx2-5 besitzt keine Bindestelle fĂŒr Munc13 und nur noch einen Rest der Rab3A-InteraktionsdomĂ€ne. Damit sollte RIM2αΔEx2-5 keine Rolle im Priming der synaptischen Vesikel spielen. Dieses Ergebnis unterstĂŒtzt die Hypothese, dass es an der Photorezeptor-Bandsynapse einen Munc13/RIM-unabhĂ€ngigen Neurotransmitter-Freisetzungsmechanismus gibt. Der zweite Teil der Arbeit stellt einen Beitrag zur Analyse der Funktion von Piccolino, der Bandsynapsen-spezifischen Spleißvariante von Piccolo, dar. Piccolino wurde sowohl auf Transkript- als auch auf Proteinebene in den Photorezeptor-Bandsynapsen und den Bandsynapsen der inneren Haarzellen im Corti Organ der Cochlea gefunden. Unter anderem konnte gezeigt werden, dass das C-terminal verkĂŒrzte Piccolino keine der fĂŒr den C-Terminus von Piccolo bekannten Interaktionen mehr eingehen kann. Es fehlen die Interaktionen mit weiteren CAZ-Proteinen wie Bassoon, RIM, Munc13, CAST und Ca2+-KanĂ€len, die im Gegensatz zur konventionellen chemischen Synapse an der Photorezeptor-Bandsynapse auch nicht mit Piccolo/Piccolino kolokalisieren. Die Analyse eines shRNA-vermittelten Piccolino-Knockdowns lieferte darĂŒber hinaus Hinweise auf eine Funktion von Piccolino beim Aufbau des Photorezeptor-synaptischen Bandes. Der Piccolino-Knockdown-PhĂ€notyp Ă€ußerte sich in einer strukturellen Desorganisation des synaptischen Bandes, wobei noch nicht weiter geklĂ€rt werden konnte, ob es sich hier um einen Defekt wĂ€hrend der Synaptogenese oder um eine nachtrĂ€gliche Degeneration der Bandsynapse handelt. Das Vorkommen der beiden Spleißvarianten RIM2αΔEx2-5 und Piccolino an der Photorezeptor-Bandsynapse stellt vermutlich eine Anpassung der CAZ an die speziellen Anforderungen dar, die an eine sensorische Synapse, wie die Photorezeptor-Bandsynapse, gestellt werden: Die rasche, tonische und graduelle Freisetzung des Neurotransmitters in AbhĂ€ngigkeit von sich Ă€ndernden StimulusintensitĂ€ten. Die genaue Funktion der beiden Spleißvarianten an der Photorezeptor-Bandsynapse muss aber noch in weiterfĂŒhrenden Analysen, beispielsweise mit Spleißvarianten-spezifischen Knockout-Tiermodellen, untersucht werden

    Identification and immunocytochemical characterization of Piccolino, a novel Piccolo splice variant selectively expressed at sensory ribbon synapses of the eye and ear.

    Get PDF
    Piccolo is one of the largest cytomatrix proteins present at active zones of chemical synapses, where it is suggested to play a role in recruiting and integrating molecules relevant for both synaptic vesicle exo- and endocytosis. Here we examined the retina of a Piccolo-mutant mouse with a targeted deletion of exon 14 in the Pclo gene. Piccolo deficiency resulted in its profound loss at conventional chemical amacrine cell synapses but retinal ribbon synapses were structurally and functionally unaffected. This led to the identification of a shorter, ribbon-specific Piccolo variant, Piccolino, present in retinal photoreceptor cells, bipolar cells, as well as in inner hair cells of the inner ear. By RT-PCR analysis and the generation of a Piccolino-specific antibody we show that non-splicing of intron 5/6 leads to premature translation termination and generation of the C-terminally truncated protein specifically expressed at active zones of ribbon synapse containing cell types. With in situ proximity ligation assays we provide evidence that this truncation leads to the absence of interaction sites for Bassoon, Munc13, and presumably also ELKS/CAST, RIM2, and the L-type Ca(2) (+) channel which exist in the full-length Piccolo at active zones of conventional chemical synapses. The putative lack of interactions with proteins of the active zone suggests a function of Piccolino at ribbon synapses of sensory neurons different from Piccolo's function at conventional chemical synapses

    Identification and Immunocytochemical Characterization of Piccolino, a Novel Piccolo Splice Variant Selectively Expressed at Sensory Ribbon Synapses of the Eye and Ear

    No full text
    Piccolo is one of the largest cytomatrix proteins present at active zones of chemical synapses, where it is suggested to play a role in recruiting and integrating molecules relevant for both synaptic vesicle exo- and endocytosis. Here we examined the retina of a Piccolo-mutant mouse with a targeted deletion of exon 14 in the Pclo gene. Piccolo deficiency resulted in its profound loss at conventional chemical amacrine cell synapses but retinal ribbon synapses were structurally and functionally unaffected. This led to the identification of a shorter, ribbon-specific Piccolo variant, Piccolino, present in retinal photoreceptor cells, bipolar cells, as well as in inner hair cells of the inner ear. By RT-PCR analysis and the generation of a Piccolino-specific antibody we show that non-splicing of intron 5/6 leads to premature translation termination and generation of the C-terminally truncated protein specifically expressed at active zones of ribbon synapse containing cell types. With in situ proximity ligation assays we provide evidence that this truncation leads to the absence of interaction sites for Bassoon, Munc13, and presumably also ELKS/CAST, RIM2, and the L-type Ca2+ channel which exist in the full-length Piccolo at active zones of conventional chemical synapses. The putative lack of interactions with proteins of the active zone suggests a function of Piccolino at ribbon synapses of sensory neurons different from Piccolo’s function at conventional chemical synapses

    Piccolino and full-length Pclo expression in different species.

    No full text
    <p><b>A</b>: Sequence comparison of the first 120 nucleotides of the Pclo intron 5/6 between mouse, rat, cow, and human. Note the 100% conservation of the stop codon in all four species (TGA; boxed region). <b>B</b>: Amino acid sequence comparison of the translation product derived from (A) between mouse, rat, cow, and human. The homology of the translated sequence (boxed region) ranges from 59% between mouse and cow, and 86% between mouse and rat. <b>C</b>: Comparative RT-PCR of mouse and rat retinal cDNA with primers flanking intron 5/6 of the <i>Pclo</i> gene (see also <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0070373#pone-0070373-g002" target="_blank">Figure 2</a>). Like in the mouse retina, also in the rat retina four additional amplicons (b–e) were detected in addition to the strongly expressed conventionally spliced Pclo transcript (a), with (e) representing the completely retained intron 5/6 of the <i>Pclo</i> gene. <b>D</b>: Representative image of the outer plexiform layer (OPL) of PFA-fixed vertical sections through rat retina double stained with antibodies against CtBP2/RIBEYE (magenta) and Piccolino (Pclo 49; green). Scale bar in D: 5 ”m.</p

    Presence of Pclo at retinal ribbon synapses in the Pclo-mutant mouse.

    No full text
    <p><b>A</b>: Schematic representation of Pclo. The exons (numbered light gray boxes), interaction domains (dark gray boxes), and epitope locations for the three polyclonal antibodies Pclo 4, Pclo 44a, and Pclo 6 are shown. Exon 14 (black box) is deleted in the Pclo-mutant (−/−) mouse. <b>B</b>: Nomarski micrograph and images of vertical sections through wild-type (+/+) and −/− retina stained with Pclo 44a. <b>C</b>: Synaptic ribbons in the outer plexiform layer (OPL) of the −/− retina double labeled for Pclo (Pclo 44a; <i>green</i>) and RIBEYE (<i>magenta</i>). <b>D</b>: Inner plexiform layer (IPL) in the +/+ and −/− retina double labeled for Pclo (Pclo 44a; <i>green</i>) and RIBEYE (<i>magenta</i>). Arrows depict single Pclo positive puncta. <b>E-G</b>: Electron micrographs of rod (<b>E</b>) and cone (<b>F</b>) photoreceptor, and rod bipolar cell (<b>G</b>) ribbon synapses from +/+ and −/− retina. Arrowheads point to synaptic ribbons. <b>H</b>: Western blots of cortex and retina synaptosomal fractions from +/+ and −/− mice probed with the three different Pclo antibodies. ONL: outer nuclear layer; INL: inner nuclear layer; GCL: ganglion cell layer; hc: horizontal cell; bc: bipolar cell; ac: amacrine cell; kDa: kilo-Dalton. Scale bar in B: 20 ”m, D: 10 ”m, E–G: 200 nm.</p

    Localization of full-length Pclo at different types of ribbon synapses.

    No full text
    <p><b>A</b>: Wild-type (+/+) and Pclo-mutant (−/−) retinae stained with the C-terminally binding Pclo 6 against full-length Pclo. <b>B</b>: Inner plexiform layer (IPL) of +/+ retina double labeled for full-length Pclo (Pclo 6; <i>green</i>) and CtBP2/RIBEYE (<i>magenta</i>). <b>C–E</b>: Pre-embedding immunoelectron micrographs of a rod photoreceptor (<b>C</b>), cone photoreceptor (<b>D</b>), and rod bipolar cell (rbc) ribbon synapse (<b>E</b>) in the +/+ retina stained with Pclo 6. Only amacrine cell synapses (<b>E</b>; asterisk) and never ribbon synapses (<b>C</b>–<b>E</b>; arrowheads) were stained for full-length Pclo. <b>F</b>: Inner hair cells (ihc) double labeled for full-length Pclo (Pclo 6; <i>green</i>) and CtBP2/RIBEYE (<i>magenta</i>). Nuclei (stained with DAPI, not shown) are circled with dotted lines. Arrowheads point to ribbon synapses, arrows demarcate conventional chemical synapses. ONL: outer nuclear layer; OPL: outer plexiform layer; INL: inner nuclear layer; GCL: ganglion cell layer. hc: horizontal cell; bc: bipolar cell; ac: amacrine cell. Scale bar in A,B: 20 ”m, C-E: 200 nm, F: 5 ”m.</p

    Missing interactions of Piccolino with Bsn and Munc13.

    No full text
    <p><b>A</b>: Schematic representation of full-length Pclo with its interaction domains (<i>dark gray</i> boxes) and known binding partners. The C-terminally truncated Piccolino lacks the C-terminal interactions. <b>B–G</b>: <i>In situ</i> proximity ligation assays (PLA) on vertical sections through wild-type retina (black and white panels) with corresponding fluorescence stainings. Positive control: interaction of RIBEYE and Bsn with the antibodies RIBEYE (green) and Bsn mab7f (magenta; <b>B</b>). Negative control: antibody Bsn mab7f (green) alone (<b>C</b>). Interaction of full-length Pclo with Bsn (<b>D</b>) and Munc13 (<b>E</b>) probed with the antibodies Pclo 6 (green), Bsn mab7f (magenta), and panMunc13 (magenta). Interaction of Piccolino with Bsn (<b>F</b>) and Munc13 (<b>G</b>) probed with the antibodies Pclo 49 (green), Bsn mab7f (magenta), and panMunc13 (magenta). ONL: outer nuclear layer; OPL: outer plexiform layer; INL: inner nuclear layer; IPL: inner plexiform layer; GCL: ganglion cell layer. Scale bar: 20 ”m.</p

    Localization of Piccolino at different types of ribbon synapses in the mouse.

    No full text
    <p><b>A</b>: Outer plexiform layer (OPL) of +/+ retina triple labeled with Pclo 49 (labels Piccolino; <i>green</i>), Pclo 44a (labels Pclo and Piccolino; <i>red</i>), and an antibody against CtBP2/RIBEYE (<i>blue</i>). <b>B</b>: Inner plexiform layer (IPL) of +/+ retina triple labeled with Pclo 49 (labels Piccolino; <i>green</i>), Pclo 44a (labels Pclo and Piccolino; <i>red</i>), and an antibody against CtBP2/RIBEYE (<i>blue</i>). Arrowheads point to ribbon synapses, arrows demarcate Pclo 44a single stained conventional chemical synapses. <b>C</b>: Inner hair cells (ihc) triple labeled with Pclo 49 (labels Piccolino; <i>green</i>), Pclo 44a (labels Pclo and Piccolino; <i>red</i>), and an antibody against CtBP2/RIBEYE (<i>blue</i>). Nuclei (stained with DAPI, not shown) are circled with dotted lines. Arrowheads point to ribbon synapses, arrows demarcate conventional chemical synapses. Scale bar in A,B: 10 ”m, C: 5 ”m.</p

    Intron retention generates a C-terminally truncated ribbon synapse specific Pclo variant.

    No full text
    <p><b>A</b>: Nucleotide sequence of intron 5/6 in the <i>Pclo</i> gene (lower case letters) with flanking exon regions (capital letters). Codons are demarcated through alternating bold and non-bold letters, and the conventionally used donor and strong acceptor site, and a hypothetical alternative weak acceptor site are indicated with black lines. Utilization of the weak acceptor site as well as complete intron retention would result in in-frame stop codons (asterisks). The amino acid sequence used for the generation of Pclo 49 is displayed beneath the nucleotide sequence. <b>B</b>: RT-PCR of cDNA from cortex, retina, isolated cone photoreceptor (cone phrs) and rod bipolar cells (rod bcs) with primers flanking intron 5/6 in the <i>Pclo</i> gene. <b>C</b>: Western blot of wild-type retina and cortex synaptosomal fractions probed with Pclo 49 against the first 23 amino acids of intron 5/6 in the <i>Pclo</i> gene. Pclo 49 labels a ∌350 kDa band in the retina, but not in cortex (left panel). Pre-incubation of Pclo 49 with the antigenic peptide completely abolished the labeling (right panel). bp: base pairs; kDa: kilo-Dalton.</p
    corecore