898 research outputs found
Improved inter-subject alignment of the lumbosacral cord for group-level in vivo gray and white matter assessments: A scan-rescan MRI study at 3T
INTRODUCTION: Magnetic resonance imaging (MRI) enables the investigation of pathological changes in gray and white matter at the lumbosacral enlargement (LSE) and conus medullaris (CM). However, conducting group-level analyses of MRI metrics in the lumbosacral spinal cord is challenging due to variability in CM length, lack of established image-based landmarks, and unknown scan-rescan reliability. This study aimed to improve inter-subject alignment of the lumbosacral cord to facilitate group-level analyses of MRI metrics. Additionally, we evaluated the scan-rescan reliability of MRI-based cross-sectional area (CSA) measurements and diffusion tensor imaging (DTI) metrics. METHODS: Fifteen participants (10 healthy volunteers and 5 patients with spinal cord injury) underwent axial T2*-weighted and diffusion MRI at 3T. We assessed the reliability of spinal cord and gray matter-based landmarks for inter-subject alignment of the lumbosacral cord, the inter-subject variability of MRI metrics before and after adjusting for the CM length, the intra- and inter-rater reliability of CSA measurements, and the scan-rescan reliability of CSA measurements and DTI metrics. RESULTS: The slice with the largest gray matter CSA as an LSE landmark exhibited the highest reliability, both within and across raters. Adjusting for the CM length greatly reduced the inter-subject variability of MRI metrics. The intra-rater, inter-rater, and scan-rescan reliability of MRI metrics were the highest at and around the LSE (scan-rescan coefficient of variation <3% for CSA measurements and <7% for DTI metrics within the white matter) and decreased considerably caudal to it. CONCLUSIONS: To facilitate group-level analyses, we recommend using the slice with the largest gray matter CSA as a reliable LSE landmark, along with an adjustment for the CM length. We also stress the significance of the anatomical location within the lumbosacral cord in relation to the reliability of MRI metrics. The scan-rescan reliability values serve as valuable guides for power and sample size calculations in future longitudinal studies
Optimized multi-echo gradient-echo magnetic resonance imaging for gray and white matter segmentation in the lumbosacral cord at 3 T
Atrophy in the spinal cord (SC), gray (GM) and white matter (WM) is typically measured in-vivo by image segmentation on multi-echo gradient-echo magnetic resonance images. The aim of this study was to establish an acquisition and analysis protocol for optimal SC and GM segmentation in the lumbosacral cord at 3 T. Ten healthy volunteers underwent imaging of the lumbosacral cord using a 3D spoiled multi-echo gradient-echo sequence (Siemens FLASH, with 5 echoes and 8 repetitions) on a Siemens Prisma 3 T scanner. Optimal numbers of successive echoes and signal averages were investigated comparing signal-to-noise (SNR) and contrast-to-noise ratio (CNR) values as well as qualitative ratings for segmentability by experts. The combination of 5 successive echoes yielded the highest CNR between WM and cerebrospinal fluid and the highest rating for SC segmentability. The combination of 3 and 4 successive echoes yielded the highest CNR between GM and WM and the highest rating for GM segmentability in the lumbosacral enlargement and conus medullaris, respectively. For segmenting the SC and GM in the same image, we suggest combining 3 successive echoes. For SC or GM segmentation only, we recommend combining 5 or 3 successive echoes, respectively. Six signal averages yielded good contrast for reliable SC and GM segmentation in all subjects. Clinical applications could benefit from these recommendations as they allow for accurate SC and GM segmentation in the lumbosacral cord
Abnormal Resting-State Network Presence in Females with Overactive Bladder
Overactive bladder (OAB) is a global problem reducing the quality of life of patients and increasing the costs of any healthcare system. The etiology of OAB is understudied but likely involves supraspinal network alterations. Here, we characterized supraspinal resting-state functional connectivity in 12 OAB patients and 12 healthy controls (HC) who were younger than 60 years. Independent component analysis showed that OAB patients had a weaker presence of the salience (Cohen's d = 0.9) and default mode network (Cohen's d = 1.1) and weaker directed connectivity between the fronto-parietal network and salience network with a longer lag time compared to HC. A region of interest analysis demonstrated weaker connectivity in OAB compared to HC (Cohen's d > 1.6 or 1.9). The degree of deviation in supraspinal connectivity in OAB patients (relative to HC) appears to be an indicator of the severity of the lower urinary tract symptoms and an indication that such symptoms are directly related to functional supraspinal alterations. Thus, future OAB therapy options should also consider supraspinal targets, while neuroimaging techniques should be given more consideration in the quest for better phenotyping of OAB
Urological Management at Discharge from Acute Spinal Cord Injury Rehabilitation: A Descriptive Analysis from a Population-based Prospective Cohort.
Background
There is limited epidemiological evidence describing contemporary neuro-urological management of persons with acute spinal cord injury (SCI).
Objective
To describe neurogenic lower urinary tract dysfunction (NLUTD) management at discharge from SCI rehabilitation.
Design setting and participants
The population-based Swiss Spinal Cord Injury (SwiSCI) cohort study prospectively collected data from 602 adults undergoing specialized postacute SCI rehabilitation from 2013 to 2020. The management strategy was based on the European Association of Urology (EAU) Guidelines on Neuro-Urology.
Outcome measurements and statistical analysis
Data were collected at discharge using the International SCI Lower Urinary Tract Function Basic Data Set. Multivariable logistic regression adjusting for demographics, SCI characteristics, and center, with inverse probability weighting accounting for sampling bias, was used to produce prevalence estimates and identify predictors of lower urinary tract symptoms (LUTS) and NLUTD management outcomes.
Results and limitations
At discharge (median time after SCI: 5.0 mo [Q1-Q3: 3.0-7.2]), the prevalence of LUTS or managed NLUTD was 82% (95% confidence interval [CI]: 79-85%). SCI completeness was the main predictor of LUTS and managed NLUTD. The risk of urinary incontinence was elevated in females (odds ratio 1.98 [95% CI: 1.18-3.32]) and with complete lesions (odds ratio 4.71 [95% CI: 2.52-8.81]). Voiding dysfunction was most commonly managed with intermittent catheterization (prevalence 39% [95% CI: 35-42%]), followed by indwelling catheterization (prevalence 22% [95% CI: 18-25%]). The prevalence of antimuscarinic or mirabegron use was 29% (95% CI: 26-33%). Urodynamic and renal function data were not collected.
Conclusions
Our population-based description of urological management in Swiss SCI centers utilizing the EAU Guidelines on Neuro-Urology may be used as a reference for evaluation in other settings. Data further indicate a need for sex-specific neuro-urological management research.
Patient summary
At discharge from spinal cord injury (SCI) rehabilitation, a majority of patients have lower urinary tract problems, especially those with complete SCI. Women have a higher risk of urinary incontinence
Lower urinary tract electrical sensory assessment: A systematic review and meta-analysis
OBJECTIVE
To summarize the current literature on lower urinary tract electrical sensory assessment (LUTESA), with regard to current perception thresholds (CPTs) and sensory evoked potentials (SEPs). The applied methods will be discussed in terms of technical aspects, confounding factors, and potential for lower urinary tract (LUT) diagnostics.
METHODS
The review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. Medline (PubMed), Embase and Scopus were searched upon October 13, 2020. Meta-analyses were performed and methodological qualities of the included studies were defined by assessing risk-of-bias (RoB) as well as confounding.
RESULTS
After screening 9925 articles, 80 studies (5 randomized controlled trials (RCTs) and 75 non-RCTs) were included, comprising a total of 3732 patients and 692 healthy subjects. 61 studies investigated exclusively CPTs and 19 studies reported on SEPs, with or without corresponding CPTs. The recording of LUTCPTs and -SEPs was shown to represent a safe and reliable assessment of LUT afferent nerve function in healthy subjects and patients. LUTESA demonstrated significant differences in LUT sensitivity between healthy subjects and neurological patients as well as after interventions such as pelvic surgery or drug treatments. Pooled analyses revealed that several stimulation parameters (e.g. stimulation frequency, location) as well as patient characteristics might affect the main outcome measures of LUTESA (CPTs, SEP latencies, peak-to-peak amplitudes, responder rate). RoB and confounding was high in most studies.
CONCLUSIONS
Preliminary data show that CPT and SEP recordings are valuable tools to more objectively assess LUT afferent nerve function. LUTESA complement already established diagnostics such as urodynamics, allowing for a more comprehensive patient workup. The high RoB and confounding rate was rather related to inconsistency and inaccuracy in reporting than the technique itself. LUTESA standardization and well-designed RCTs are crucial to implement LUTESA as a clinical assessment tool
Development of a Sham Protocol to Investigate Transcutaneous Tibial Nerve Stimulation in Randomised, Sham-Controlled, Double-Blind Clinical Trials
Transcutaneous tibial nerve stimulation (TTNS) is a promising treatment for neurogenic lower urinary tract symptoms. However, the evidence is limited due to a general lack of randomised controlled trials (RCTs) and, also, inconsistency in the sham and blinding conditions. In the context of much-needed RCTs, we aimed to develop a suitable sham-control protocol for a clinical setting to maintain blinding but avoid meaningful stimulation of the tibial nerve. Three potential electrode positions (lateral malleolus/5th metatarsal/plantar calcaneus) and two electrode sizes (diameter: 2.5 cm/3.2 cm) were tested to determine which combination provided the optimal sham configuration for a TTNS approach, based on a visible motor response. Sixteen healthy volunteers underwent sensory and motor assessments for each sham configuration. Eight out of them came back for an extra TTNS visit. Sensory thresholds were present for all sham configurations, with linear regression models revealing a significant effect regarding electrode position (highest at plantar calcaneus) but not size. In addition, motor thresholds varied with the position-lowest for the 5th metatarsal. Only using this position and 3.2 cm electrodes attained a 100% response rate. Compared to TTNS, sensory and motor thresholds were generally higher for the sham configurations; meanwhile, perceived pain was only higher at the lateral malleolus. In conclusion, using the 5th metatarsal position and 3.2 cm electrodes proved to be the most suitable sham configuration. Implemented as a four-electrode setup with standardized procedures, this appears to be a suitable RCT protocol for maintaining blinding and controlling for nonspecific TTNS effects in a clinical setting
Temporal development of unfavourable urodynamic parameters during the first year after spinal cord injury
Objectives: To describe the temporal development of and risk factors for the occurrence of unfavourable urodynamic parameters during the first year after spinal cord injury (SCI).
Patients and methods: This population-based longitudinal study used data from 97 adult patients with a single-event traumatic or ischaemic SCI who underwent video-urodynamic investigation (UDI) at a university SCI centre. The first occurrences of unfavourable urodynamic parameters (detrusor overactivity combined with detrusor sphincter dyssynergia [DO-DSD], maximum storage detrusor pressure ≥40 cmH2 O, bladder compliance <20 mL/cmH2 O, vesico-ureteric reflux [VUR] and any unfavourable parameter [composite outcome]) were evaluated using time-to-event analysis.
Results: The majority of the population (87/97 [90%]) had at least one unfavourable urodynamic parameter. Most unfavourable urodynamic parameters were initially identified during the 1- or 3-month UDI, including 92% of the DO-DSD (78/85), 82% of the maximum storage pressure ≥40 cmH2 O (31/38), and 100% of the VUR (seven of seven) observations. No low bladder compliance was observed. The risk of DO-DSD was elevated in patients with thoracic SCI compared to those with lumbar SCI (adjusted hazard ratio [aHR] 2.38, 95% confidence interval [CI] 1.16-4.89). Risk of maximum storage detrusor pressure ≥40 cmH2 O was higher in males than females (aHR 8.33, 95% CI 2.51-27.66), in patients with a cervical SCI compared to those with lumbar SCI (aHR 14.89, 95% CI 3.28-67.55), and in patients with AIS Grade B or C compared to AIS Grade D SCI (aHR 6.17, 95% CI 1.78-21.39). No risk factors were identified for the composite outcome of any unfavourable urodynamic parameter.
Conclusions: The first UDI should take place within 3 months after SCI as to facilitate early diagnosis of unfavourable urodynamic parameters and timely treatment. Neuro-urological guidelines and individualised management strategies for patients with SCI may be strengthened by considering sex and SCI characteristics in the scheduling of UDIs.
Keywords: #Urology; longitudinal studies; spinal cord injuries; survival analysis; urinary bladder, neurogenic; urinary bladder, overactive; urodynamic
Urodynamics Are Essential to Predict the Risk for Upper Urinary Tract Damage after Acute Spinal Cord Injury
We used clinical parameters to develop a prediction model for the occurrence of urodynamic risk factors for upper urinary tract (UUT) damage during the first year after acute spinal cord injury (SCI). A total of 97 patients underwent urodynamic investigation at 1, 3, 6, and 12 months after acute SCI, within the framework of a population-based longitudinal study at a single university SCI center. Candidate predictors included demographic characteristics and neurological and functional statuses 1 month after SCI. Outcomes included urodynamic risk factors for UUT damage: detrusor overactivity combined with detrusor sphincter dyssynergia, maximum storage detrusor pressure (pDetmax) ≥ 40 cmHO, bladder compliance < 20 mL/cmHO, and vesicoureteral reflux. Multivariable logistic regression was used for the prediction model development and internal validation, using the area under the receiver operating curve (aROC) to assess model discrimination. Two models showed fair discrimination for pDetmax ≥ 40 cmHO: (i) upper extremity motor score and sex, aROC 0.79 (95% CI: 0.69-0.89), C-statistic 0.78 (95% CI: 0.69-0.87), and (ii) neurological level, American Spinal Injury Association Impairment Scale grade, and sex, aROC 0.78 (95% CI: 0.68-0.89), C-statistic 0.76 (95% CI: 0.68-0.85). We identified two models that provided fair predictive values for urodynamic risk factors of UUT damage during the first year after SCI. Pending external validation, these models may be useful for clinical trial planning, although less so for individual-level patient management. Therefore, urodynamics remains essential for reliably identifying patients at risk of UUT damage
bTUNED: transcutaneous tibial nerve stimulation for neurogenic lower urinary tract dysfunction
OBJECTIVE
To present the protocol for a randomized controlled trial (RCT) evaluating the efficacy and safety of transcutaneous tibial nerve stimulation (TTNS) for refractory neurogenic lower urinary tract dysfunction (NLUTD).
STUDY DESIGN AND RESULTS
bTUNED (bladder and TranscUtaneous tibial Nerve stimulation for nEurogenic lower urinary tract Dysfunction) is an international multicentre, sham-controlled, double-blind RCT investigating the efficacy and safety of TTNS. The primary outcome is success of TTNS, defined as improvements in key bladder diary variables at study end compared to baseline values. The focus of the treatment is defined by the Self-Assessment Goal Achievement (SAGA) questionnaire. Secondary outcomes are the effect of TTNS on urodynamic, neurophysiological, and bowel function outcome measures, as well as the safety of TTNS.
CONCLUSIONS
A total of 240 patients with refractory NLUTD will be included and randomized 1:1 into the verum or sham TTNS group from March 2020 until August 2026. TTNS will be performed twice a week for 30 min during 6 weeks. The patients will attend baseline assessments, 12 treatment visits and follow-up assessments at the study end
- …