56 research outputs found

    MarCO: Early Operations of the First CubeSats to Mars

    Get PDF
    The MarCO (Mars Cube One) spacecraft launched with the InSight mission from Vandenburg Airforce Base on May 5, 2018. These spacecraft, the first interplanetary CubeSats, serve as technology demonstrators, supporting the InSight Mars lander. During InSight’s entry, descent, and landing sequence, the MarCO spacecraft will flyby Mars, collecting transmitted data from the lander, and relaying it back to the Deep Space Network (DSN) on Earth. This serves as a demonstrator for the “carry-your-own-relay” concept that might be utilized on more challenging future missions Prior to InSight support, the mission will also demonstrate the capability for a CubeSat sized, DSN compatible deep space transponder, to independently navigate from the Earth to Mars with a small spacecraft, and flight testing for numerous commercial products. In this paper, we present a status update of the mission, an overview of early operations, and an outline for the remainder of the mission to Mars. A broad description of the planetary protection approach that MarCO utilized is provided, as well as detail of the first trajectory correction maneuver

    Mission Operations and Navigation Toolkit Environment

    Get PDF
    MONTE (Mission Operations and Navigation Toolkit Environment) Release 7.3 is an extensible software system designed to support trajectory and navigation analysis/design for space missions. MONTE is intended to replace the current navigation and trajectory analysis software systems, which, at the time of this reporting, are used by JPL's Navigation and Mission Design section. The software provides an integrated, simplified, and flexible system that can be easily maintained to serve the needs of future missions in need of navigation services

    Nucleoside/nucleotide reverse transcriptase inhibitor sparing regimen with once daily integrase inhibitor plus boosted darunavir is non-inferior to standard of care in virologically-suppressed children and adolescents living with HIV – Week 48 results of the randomised SMILE Penta-17-ANRS 152 clinical trial

    Get PDF

    Mars Science Laboratory Interplanetary Navigation Performance

    No full text
    The Mars Science Laboratory spacecraft, carrying the Curiosity rover to Mars, hit the top of the Martian atmosphere just 200 meters from where it had been predicted more than six days earlier, and 2.6 million kilometers away. This un-expected level of accuracy was achieved by a combination of factors including: spacecraft performance, tracking data processing, dynamical modeling choices, and navigation filter setup. This paper will describe our best understanding of what were the factors that contributed to this excellent interplanetary trajectory prediction performance. The accurate interplanetary navigation contributed to the very precise landing performance, and to the overall success of the mission

    Mars Science Laboratory Interplanetary Navigation Analysis

    No full text
    The Mars Science Laboratory (MSL) is a NASA rover mission that will be launched in late 2011 and will land on Mars in August of 2012. This paper describes the analyses performed to validate the navigation system for launch, interplanetary cruise, and approach. MSL will use guidance during its descent into Mars in order to minimize landing dispersions, and therefore will be able to use smaller landing zones that are closer to terrain of high scientific interest. This will require a more accurate delivery of the spacecraft to the atmospheric entry interface, and a late update of the state of the spacecraft at entry. During cruise and approach the spacecraft may perform up to six trajectory correction maneuvers (TCMs), to target to the desired landing site with the required flight path angle at entry. Approach orbit determination covariance analyses have been performed to evaluate the accuracy that can be achieved in delivering the spacecraft to the entry interface point, and to determine how accurately the state of the spacecraft can be predicted to initialize the guidance algorithm. In addition, a sensitivity analysis has been performed to evaluate which factors most contribute to the improvement or degradation of the navigation performance, for both entry flight path angle delivery and entry state knowledge

    Approach and Entry, Descent, and Landing Operations for the Mars Science Laboratory Mission

    No full text
    On August 5th, 2012, at 10:31 PM PDT, the Mars Science Laboratory (MSL) rover Curiosity landed safely within Gale Crater. Her successful landing de-pended not only upon the flawless execution of the numerous critical activities during the seven minute entry, descent, and landing (EDL), but also upon the operational preparations and decisions made by the flight team during approach, the final weeks, days, and hours prior to landing. During this period, decisions made by the flight team balanced operational risk to the spacecraft in flight with any resulting risks incurred during EDL as a result of those decisions. This pa-per summarizes the operations plans made in preparation for Approach and EDL and the as flown decisions and actions executed that balanced the operational and EDL risks and prepared the vehicle for a successful landing

    The Next 25 Years of Deep Space Navigation

    No full text
    This paper reviews the most probable set of NASA deep space missions that will be launched in the next twenty-five years, discusses the navigational challenges that will confront them, and outlines the most probable solutions to these challenges
    corecore