2,217 research outputs found

    Selection of Nature-Based Solutions to Improve Comfort in Schools During Heat Waves

    Full text link
    Climate change impacts particularly affect vulnerable populations such as children. Therefore, addressing the adaptation of educational buildings is crucial in avoiding these negative effects on school performance. In this paper, three educational buildings, located in Badajoz (Spain), Evora (Portugal) and Porto (Portugal), serve as pilot samples to study the suitability of nature-based solutions (NBS), chosen for each one of three climatic zones. The NBS selected include green roofs, vertical structures with vegetation to shade holes, outdoor trees and free-cooling ventilation. The scenarios of the different NBS implemented in the three models were simulated with the software EnergyPlus, which allows optimising the appropriate decision before renovation operations begin. The results obtained from the simulations suggest energy performance improvements after applying the most adequate NBS selection to each one of the three buildings tested. Particularly, a reduction in radiation on both roofs and facades is required in the case of Evora and Badajoz, where both climate zones have similar features, that is, warm and dry. While in Porto, milder and more humid than the former ones, it is very effective to operate mainly on the roof, complemented by small ventilation operations.The authors gratefully acknowledge the support of this work by the LIFE+ Programme under the responsibility of the Directorate General for the Environment of the European Commission through the agreement LIFE17 CCA/ES/00088, LIFE myBU ILDINGisGREEN

    Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV

    Get PDF
    The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8  TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum
    corecore