4 research outputs found

    Indoor Air Purification Using Activated Carbon Adsorbers: Regeneration Using Catalytic Combustion of Intermediately Stored VOC

    No full text
    In this study, we demonstrate a two-step process where activated carbon based air purifier systems can be regenerated in situ and eliminate volatile organic compounds (VOCs) from indoor air in an energy efficient way. A carbon based adsorber was combined in series with a CeO<sub>2</sub>/TiO<sub>2</sub> oxidative catalyst for total oxidation of the previously adsorbed and periodically released volatile organic compounds during regeneration runs. We investigated the adsorption and desorption behavior of five different VOCs (diethyl ether, limonene, linalool, hexanoic acid, triethylamine and <i>n</i>-decane) with thermogravimetric measurements, mass spectrometry and elemental analysis. Cyclic loading and regeneration experiments were carried out with selected VOCs (limonene, linalool and <i>n</i>-decane) for testing regeneration at elevated temperature. We showed that in situ thermal regeneration and subsequent oxidation of released VOC is a sustainable and easy applicable technology for indoor air purification. This two-step approach allows energy saving as the VOCs are eliminated discontinuously (enriching VOCs; periodic catalytic combustion), and is of high environmental and economic interest, as much less maintenance services are required

    Efficient Magnetic Recycling of Covalently Attached Enzymes on Carbon-Coated Metallic Nanomagnets

    No full text
    In the pursuit of robust and reusable biocatalysts for industrial synthetic chemistry, nanobiotechnology is currently taking a significant part. Recently, enzymes have been immobilized on different nanoscaffold supports. Carbon coated metallic nanoparticles were found to be a practically useful support for enzyme immobilization due to their large surface area, high magnetic saturation, and manipulatable surface chemistry. In this study carbon coated cobalt nanoparticles were chemically functionalized (diazonium chemistry), activated for bioconjugation (<i>N,N</i>-disuccinimidyl carbonate), and subsequently used in enzyme immobilization. Three enzymes, β-glucosidase, α-chymotrypsin, and lipase B were successfully covalently immobilized on the magnetic nonsupport. The enzyme–particle conjugates formed retained their activity and stability after immobilization and were efficiently recycled from milliliter to liter scales in short recycle times

    Efficient Magnetic Recycling of Covalently Attached Enzymes on Carbon-Coated Metallic Nanomagnets

    No full text
    In the pursuit of robust and reusable biocatalysts for industrial synthetic chemistry, nanobiotechnology is currently taking a significant part. Recently, enzymes have been immobilized on different nanoscaffold supports. Carbon coated metallic nanoparticles were found to be a practically useful support for enzyme immobilization due to their large surface area, high magnetic saturation, and manipulatable surface chemistry. In this study carbon coated cobalt nanoparticles were chemically functionalized (diazonium chemistry), activated for bioconjugation (<i>N,N</i>-disuccinimidyl carbonate), and subsequently used in enzyme immobilization. Three enzymes, β-glucosidase, α-chymotrypsin, and lipase B were successfully covalently immobilized on the magnetic nonsupport. The enzyme–particle conjugates formed retained their activity and stability after immobilization and were efficiently recycled from milliliter to liter scales in short recycle times

    Magnetic Superbasic Proton Sponges Are Readily Removed and Permit Direct Product Isolation

    No full text
    Workup in organic synthesis can be very time-consuming, particularly when using reagents with both a solubility similar to that of the desired products and a tendency not to crystallize. In this respect, reactions involving organic bases would strongly benefit from a tremendously simplified separation process. Therefore, we synthesized a derivative of the superbasic proton sponge 1,8-bis­(dimethylamino)­naphthalene (DMAN) and covalently linked it to the strongest currently available nanomagnets based on carbon-coated cobalt metal nanoparticles. The immobilized magnetic superbase reagent was tested in Knoevenagel- and Claisen–Schmidt-type condensations and showed conversions of up to 99%. High yields of up to 97% isolated product could be obtained by simple recrystallization without using column chromatography. Recycling the catalyst was simple and fast with an insignificant decrease in catalytic activity
    corecore