9,704 research outputs found

    Spectroscopy of atomic rubidium at 500 bar buffer gas pressure: approaching the thermal equilibrium of dressed atom-light states

    Full text link
    We have recorded fluorescence spectra of the atomic rubidium D-lines in the presence of several hundreds of bars buffer gas pressure. With additional saturation broadening a spectral linewidth comparable to the thermal energy of the atoms in the heated gas cell is achieved. An intensity-dependent blue asymmetry of the spectra is observed, which becomes increasingly pronounced when extrapolating to infinitely high light intensity. We interpret our results as evidence for the dressed (coupled atom-light) states to approach thermal equilibrium.Comment: 4 page

    The WIRED Survey. IV. New Dust Disks from the McCook & Sion White Dwarf Catalog

    Get PDF
    We have compiled photometric data from the Wide-field Infrared Survey Explorer All Sky Survey and other archival sources for the more than 2200 objects in the original McCook & Sion Catalog of Spectroscopically Identified White Dwarfs. We applied color-selection criteria to identify 28 targets whose infrared spectral energy distributions depart from the expectation for the white dwarf photosphere alone. Seven of these are previously known white dwarfs with circumstellar dust disks, five are known central stars of planetary nebulae, and six were excluded for being known binaries or having possible contamination of their infrared photometry. We fit white dwarf models to the spectral energy distributions of the remaining ten targets, and find seven new candidates with infrared excess suggesting the presence of a circumstellar dust disk. We compare the model dust disk properties for these new candidates with a comprehensive compilation of previously published parameters for known white dwarfs with dust disks. It is possible that the current census of white dwarfs with dust disks that produce an excess detectable at K-band and shorter wavelengths is close to complete for the entire sample of known WDs to the detection limits of existing near-IR all-sky surveys. The white dwarf dust disk candidates now being found using longer wavelength infrared data are drawn from a previously underrepresented region of parameter space, in which the dust disks are overall cooler, narrower in radial extent, and/or contain fewer emitting grains.Comment: accepted for publication in The Astrophysical Journal; 34 pages, 5 figures, 5 tables; added missing reference in Section 2 (p. 7

    Public Bikesharing in North America During a Period of Rapid Expansion: Understanding Business Models, Industry Trends & User Impacts, MTI Report 12-29

    Get PDF
    Public bikesharing—the shared use of a bicycle fleet—is an innovative transportation strategy that has recently emerged in major cities around the world, including North America. Information technology (IT)-based bikesharing systems typically position bicycles throughout an urban environment, among a network of docking stations, for immediate access. Trips can be one-way, round-trip, or both, depending on the operator. Bikesharing can serve as a first-and-last mile connector to other modes, as well as for both short and long distance destinations. In 2012, 22 IT-based public bikesharing systems were operating in the United States, with a total of 884,442 users and 7,549 bicycles. Four IT-based programs in Canada had a total of 197,419 users and 6,115 bicycles. Two IT-based programs in Mexico had a total of 71,611 users and 3,680 bicycles. (Membership numbers reflect the total number of short- and long-term users.) This study evaluates public bikesharing in North America, reviewing the change in travel behavior exhibited by members of different programs in the context of their business models and operational environment. This Phase II research builds on data collected during our Phase I research conducted in 2012. During the 2012 research (Phase I), researchers conducted 14 expert interviews with industry experts and public officials in the United States and Canada, as well as 19 interviews with the manager and/or key staff of IT-based bikesharing organizations. For more information on the Phase I research, please see the Shaheen et al., 2012 report Public Bikesharing in North America: Early Operator and User Understanding. For this Phase II study, an additional 23 interviews were conducted with IT-based bikesharing organizations in the United States, Canada, and Mexico in Spring 2013. Notable developments during this period include the ongoing expansion of public bikesharing in North America, including the recent launches of multiple large bikesharing programs in the United States (i.e., Citi Bike in New York City, Divvy in Chicago, and Bay Area Bike Share in the San Francisco Bay Area). In addition to expert interviews, the authors conducted two kinds of surveys with bikesharing users. One was the online member survey. This survey was sent to all people for whom the operator had an email address.The population of this survey was mainly annual members of the bikesharing system, and the members took the survey via a URL link sent to them from the operator. The second survey was an on-street survey. This survey was designed for anyone, including casual users (i.e., those who are not members of the system and use it on a short-term basis), to take “on-street” via a smartphone. The member survey was deployed in five cities: Montreal, Toronto, Salt Lake City, Minneapolis-Saint Paul, and Mexico City. The on-street survey was implemented in three cities: Boston, Salt Lake City, and San Antonio

    Spectroscopy of a narrow-line laser cooling transition in atomic dysprosium

    Full text link
    The laser cooling and trapping of ultracold neutral dysprosium has been recently demonstrated using the broad, open 421-nm cycling transition. Narrow-line magneto-optical trapping of Dy on longer wavelength transitions would enable the preparation of ultracold Dy samples suitable for loading optical dipole traps and subsequent evaporative cooling. We have identified the closed 741-nm cycling transition as a candidate for the narrow-line cooling of Dy. We present experimental data on the isotope shifts, the hyperfine constants A and B, and the decay rate of the 741-nm transition. In addition, we report a measurement of the 421-nm transition's linewidth, which agrees with previous measurements. We summarize the laser cooling characteristics of these transitions as well as other narrow cycling transitions that may prove useful for cooling Dy.Comment: 6+ pages, 5 figures, 5 table

    Fractional photon-assisted tunneling in an optical superlattice: large contribution to particle transfer

    Full text link
    Fractional photon-assisted tunneling is investigated both analytically and numerically for few interacting ultra-cold atoms in the double-wells of an optical superlattice. This can be realized experimentally by adding periodic shaking to an existing experimental setup [Phys. Rev. Lett. 101, 090404 (2008)]. Photon-assisted tunneling is visible in the particle transfer between the wells of the individual double wells. In order to understand the physics of the photon-assisted tunneling, an effective model based on the rotating wave approximation is introduced. The validity of this effective approach is tested for wide parameter ranges which are accessible to experiments in double-well lattices. The effective model goes well beyond previous perturbation theory approaches and is useful to investigate in particular the fractional photon-assisted tunneling resonances. Analytic results on the level of the experimentally realizable two-particle quantum dynamics show very good agreement with the numerical solution of the time-dependent Schr\"odinger equation. Far from being a small effect, both the one-half-photon and the one-third-photon resonance are shown to have large effects on the particle transfer.Comment: 9 pages, 11 png-figure

    2-D Radiative Transfer in Protostellar Envelopes: II. An Evolutionary Sequence

    Full text link
    We present model spectral energy distributions, colors, polarization, and images for an evolutionary sequence of a low-mass protostar from the early collapse stage (Class 0) to the remnant disk stage (Class III). We find a substantial overlap in colors and SEDs between protostars embedded in envelopes (Class 0-I) and T Tauri disks (Class II), especially at mid-IR wavelengths. Edge-on Class I-II sources show double-peaked spectral energy distributions, with a short-wavelength hump due to scattered light and the long-wavelength hump due to thermal emission. These are the bluest sources in mid-IR color-color diagrams. Since Class 0 and I sources are diffuse, the size of the aperture over which fluxes are integrated has a substantial effect on the computed colors, with larger aperture results showing significantly bluer colors. This causes overlap in color-color diagrams between all evolutionary states, especially in the mid-IR. However the near-IR polarization of the Class 0 sources is much higher than the Class I-II sources, providing a means to separate these evolutionary states. We varied the grain properties in the circumstellar envelope, allowing for larger grains in the disk midplane and smaller in the envelope. We find that grain growth in disks of Class I sources can be detected at wavelengths greater than 100 Ό\mum. Our image calculations predict that the diffuse emission from edge-on Class I and II sources should be detectable in the mid-IR with the Space Infrared Telescope Facility (SIRTF) in nearby star forming regions (out to several hundred parsecs).Comment: A version with high-resolution images is available at http://www.astro.wisc.edu/glimpse/glimpsepubs.htm

    Testing the Unitarity of the CKM Matrix with a Space-Based Neutron Decay Experiment

    Full text link
    If the Standard Model is correct, and fundamental fermions exist only in the three generations, then the CKM matrix should be unitary. However, there remains a question over a deviation from unitarity from the value of the neutron lifetime. We discuss a simple space-based experiment that, at an orbit height of 500 km above Earth, would measure the kinetic-energy, solid-angle, flux spectrum of gravitationally bound neutrons (kinetic energy K<0.606 eV at this altitude). The difference between the energy spectrum of neutrons that come up from the Earth's atmosphere and that of the undecayed neutrons that return back down to the Earth would yield a measurement of the neutron lifetime. This measurement would be free of the systematics of laboratory experiments. A package of mass <25<25 kg could provide a 10^{-3} precision in two years.Comment: 10 pages, 4 figures. Revised and updated for publicatio

    Thermal quantum electrodynamics of nonrelativistic charged fluids

    Get PDF
    The theory relevant to the study of matter in equilibrium with the radiation field is thermal quantum electrodynamics (TQED). We present a formulation of the theory, suitable for non relativistic fluids, based on a joint functional integral representation of matter and field variables. In this formalism cluster expansion techniques of classical statistical mechanics become operative. They provide an alternative to the usual Feynman diagrammatics in many-body problems which is not perturbative with respect to the coupling constant. As an application we show that the effective Coulomb interaction between quantum charges is partially screened by thermalized photons at large distances. More precisely one observes an exact cancellation of the dipolar electric part of the interaction, so that the asymptotic particle density correlation is now determined by relativistic effects. It has still the r−6r^{-6} decay typical for quantum charges, but with an amplitude strongly reduced by a relativistic factor.Comment: 32 pages, 0 figures. 2nd versio
    • 

    corecore