3,941 research outputs found
Perilipin regulates the thermogenic actions of norepinephrine in brown adipose tissue
In response to cold, norepinephrine (NE)-induced triacylglycerol hydrolysis (lipolysis) in adipocytes of brown adipose tissue (BAT) provides fatty acid substrates to mitochondria for heat generation (adaptive thermogenesis). NE-induced lipolysis is mediated by protein kinase A (PKA)-dependent phosphorylation of perilipin, a lipid droplet-associated protein that is the major regulator of lipolysis. We investigated the role of perilipin PKA phosphorylation in BAT NE-stimulated thermogenesis using a novel mouse model in which a mutant form of perilipin, lacking all six PKA phosphorylation sites, is expressed in adipocytes of perilipin knockout (Peri KO) mice. Here, we show that despite a normal mitochondrial respiratory capacity, NE-induced lipolysis is abrogated in the interscapular brown adipose tissue (IBAT) of these mice. This lipolytic constraint is accompanied by a dramatic blunting (∼70%) of the in vivo thermal response to NE. Thus, in the presence of perilipin, PKA-mediated perilipin phosphorylation is essential for NE-dependent lipolysis and full adaptive thermogenesis in BAT. In IBAT of Peri KO mice, increased basal lipolysis attributable to the absence of perilipin is sufficient to support a rapid NE-stimulated temperature increase (∼3.0°C) comparable to that in wild-type mice. This observation suggests that one or more NE-dependent mechanism downstream of perilipin phosphorylation is required to initiate and/or sustain the IBAT thermal response
Jost-Lehmann-Dyson Representation, Analyticity in Angle Variable and Upper Bounds in Noncommutative Quantum Field Theory
The existence of Jost-Lehmann-Dyson representation analogue has been proved
in framework of space-space noncommutative quantum field theory. On the basis
of this representation it has been found that some class of elastic amplitudes
admits an analytical continuation into complex \cos\vartheta plane and
corresponding domain of analyticity is Martin ellipse. This analyticity
combined with unitarity leads to Froissart-Martin upper bound on total cross
section.Comment: LaTeX, 15 pages, improved version, misprints corrected, the
references added, to appear in Theor. Math. Phy
Generalized thermodynamics of q-deformed bosons and fermions
We study the thermostatistics of q-deformed bosons and fermions obeying the
symmetric algebra and show that it can be built on the formalism of q-calculus.
The entire structure of thermodynamics is preserved if ordinary derivatives are
replaced by an appropriate Jackson derivative. In this framework, we derive the
most important thermodynamic functions describing the q-boson and q-fermion
ideal gases in the thermodynamic limit. We also investigate the semi-classical
limit and the low temperature regime and demonstrate that the nature of the
q-deformation gives rise to pure quantum statistical effects stronger than
undeformed boson and fermion particles.Comment: 8 pages, Physical Review E in pres
Vascular contributions to cognitive impairment and dementia: Research consortia that focus on etiology and treatable targets to lessen the burden of dementia worldwide
The research into vascular contributions to cognitive impairment and dementia (VCID) aims to understand the importance of cerebrovascular biology in cognitive decline. Prevention and treatment of VCID is poised to have major impact on dementia-related disease burden and is thus a critical emerging objective in dementia research. This article presents VCID consortia focused on multidisciplinary approaches to identify key pathologic targets and develop diagnostic tools with the goal of bridging the divide between basic research and clinical trials. Members of these multi-institute, multidisciplinary consortia provide a prospective on the history and emerging science of VCID and how VCID consortia can address some of the more complex questions in VCID and drive the field forward. These consortia, and others like them, are uniquely suited to tackle some of the most difficult obstacles in translating research to the clinic
Interlayer Registry Determines the Sliding Potential of Layered Metal Dichalcogenides: The case of 2H-MoS2
We provide a simple and intuitive explanation for the interlayer sliding
energy landscape of metal dichalcogenides. Based on the recently introduced
registry index (RI) concept, we define a purely geometrical parameter which
quantifies the degree of interlayer commensurability in the layered phase of
molybdenum disulphide (2HMoS2). A direct relation between the sliding energy
landscape and the corresponding interlayer registry surface of 2H-MoS2 is
discovered thus marking the registry index as a computationally efficient means
for studying the tribology of complex nanoscale material interfaces in the
wearless friction regime.Comment: 13 pages, 7 figure
Sisyphus cooling and amplification by a superconducting qubit
Laser cooling of the atomic motion paved the way for remarkable achievements
in the fields of quantum optics and atomic physics, including Bose-Einstein
condensation and the trapping of atoms in optical lattices. More recently
superconducting qubits were shown to act as artificial two-level atoms,
displaying Rabi oscillations, Ramsey fringes, and further quantum effects.
Coupling such qubits to resonators brought the superconducting circuits into
the realm of quantum electrodynamics (circuit QED). It opened the perspective
to use superconducting qubits as micro-coolers or to create a population
inversion in the qubit to induce lasing behavior of the resonator. Furthering
these analogies between quantum optical and superconducting systems we
demonstrate here Sisyphus cooling of a low frequency LC oscillator coupled to a
near-resonantly driven superconducting qubit. In the quantum optics setup the
mechanical degrees of freedom of an atom are cooled by laser driving the atom's
electronic degrees of freedom. Here the roles of the two degrees of freedom are
played by the LC circuit and the qubit's levels, respectively. We also
demonstrate the counterpart of the Sisyphus cooling, namely Sisyphus
amplification. Parallel to the experimental demonstration we analyze the system
theoretically and find quantitative agreement, which supports the
interpretation and allows us to estimate system parameters.Comment: 7 pages, 4 figure
Statistics of Q-Oscillators, Quons and Relation to Fractional Satistics
The statistics of -oscillators, quons and to some extent, of anyons are
studied and the basic differences among these objects are pointed out. In
particular, the statistical distributions for different bosonic and fermionic
-oscillators are found for their corresponding Fock space representations in
the case when the hamiltonian is identified with the number operator. In this
case and for nonrelativistic particles, the single-particle temperature Green
function is defined with -deformed periodicity conditions. The equations of
state for nonrelativistic and ultrarelativistic bosonic -gases in an
arbitrary space dimension are found near Bose statistics, as well as the one
for an anyonic gas near Bose and Fermi statistics. The first corrections to the
second virial coefficients are also evaluated. The phenomenon of Bose-Einstein
condensation in the -deformed gases is also discussed.Comment: 21 pages, Latex, HU-TFT-93-2
- …