7,421 research outputs found

    Blocking Java Applets at the Firewall

    Full text link
    This paper explores the problem of protecting a site on the Internet against hostile external Java applets while allowing trusted internal applets to run. With careful implementation, a site can be made resistant to current Java security weaknesses as well as those yet to be discovered. In addition, we describe a new attack on certain sophisticated firewalls that is most effectively realized as a Java applet

    What causes differences in achievement in Zimbabwe's secondary schools?

    Get PDF
    The authors found that students who attended high-fee-paying (trust) schools, elite urban governments schools, and mission schools scored better in mathematics and English achievement than did students in the less-well-endowed government schools and those established by local councils. Much of the variation in the student achievement was attributable to the schools the student attended. Examination results were higher in schools with a high proportion of trained teachers, with a good supply of textbooks, and with a stable faculty (high teacher retention). But once researcher control for these factors, contrary to expectations, some underendowed local council and government schools are more effective at boosting achievement than their counterparts with more resources. So, textbooks and teachers are important in raising achievement, but more research is needed into what characteristics differentiate high-achieving schools from low-achieving schools.Teaching and Learning,Gender and Education,Primary Education,Health Monitoring&Evaluation,Girls Education

    Seasonal changes of the volatile density in the coma and on the surface of comet 67P/Churyumov-Gerasimenko

    Get PDF
    Starting from several monthly data sets of Rosetta's COmetary Pressure Sensor we reconstruct the gas density in the coma around comet 67P/Churyumov-Gerasimenko. The underlying inverse gas model is constructed by fitting ten thousands of measurements to thousands of potential gas sources distributed across the entire nucleus surface. The ensuing self-consistent solution for the entire coma density and surface activity reproduces the temporal and spatial variations seen in the data for monthly periods with Pearson correlation coefficients of 0.93 and higher. For different seasonal illumination conditions before and after perihelion we observe a systematic shift of gas sources on the nucleus.Comment: 11 pages, 7 figures, accepted in MNRAS (2017

    Surface localization of gas sources on comet 67P/Churyumov-Gerasimenko based on DFMS/COPS data

    Get PDF
    We reconstruct the temporal evolution of the source distribution for the four major gas species H2O, CO2, CO, and O2 on the surface of comet 67P/Churyumov-Gerasimenko during its 2015 apparition. The analysis applies an inverse coma model and fits to data between August 6th 2014 and September 5th 2016 measured with the Double Focusing Mass Spectrometer (DFMS) of the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) and the COmet Pressure Sensor (COPS). The spatial distribution of gas sources with their temporal variation allows one to construct surface maps for gas emissions and to evaluate integrated productions rates. For all species peak production rates and integrated productions rates per orbit are evaluated separately for the northern and the southern hemisphere. The nine most active emitting areas on the comet's surface are defined and their correlation to emissions for each of the species is discussed.Comment: 11 page

    Insight into the origin of cometary ices from Rosetta/ROSINA mass spectrometer data

    Full text link
    Here we review some of the major findings of the mass spectrometer suite ROSINA on board of ESA's Rosetta spacecraft to comet 67P/Churyumov-Gerasimenko. For more than 2 years, ROSINA continuously measured the composition of the gases sublimating from the comet's nucleus. ROSINA measurements provided insight into the origin of the ices in 67P/Churyumov-Gerasimenko. The obtained molecular, elemental, and isotope abundances revealed a composition more complex than previously known. Furthermore, a subset of these measurements indicate that a substantial fraction of the molecules incorporated into the comet predate the formation of the solar system

    Low-ionization Line Emission from Starburst Galaxies: A New Probe of Galactic-Scale Outflows

    Full text link
    We study the kinematically narrow, low-ionization line emission from a bright, starburst galaxy at z = 0.69 using slit spectroscopy obtained with Keck/LRIS. The spectrum reveals strong absorption in MgII and FeII resonance transitions with Doppler shifts of -200 to -300 km/s, indicating a cool gas outflow. Emission in MgII near and redward of systemic velocity, in concert with the observed absorption, yields a P Cygni-like line profile similar to those observed in the Ly alpha transition in Lyman Break Galaxies. Further, the MgII emission is spatially resolved, and extends significantly beyond the emission from stars and HII regions within the galaxy. Assuming the emission has a simple, symmetric surface brightness profile, we find that the gas extends to distances > ~7 kpc. We also detect several narrow FeII* fine-structure lines in emission near the systemic velocity, arising from energy levels which are radiatively excited directly from the ground state. We suggest that the MgII and FeII* emission is generated by photon scattering in the observed outflow, and emphasize that this emission is a generic prediction of outflows. These observations provide the first direct constraints on the minimum spatial extent and morphology of the wind from a distant galaxy. Estimates of these parameters are crucial for understanding the impact of outflows in driving galaxy evolution.Comment: Submitted to ApJL. 6 pages, 4 figures. Uses emulateapj forma

    The chemical connection between 67P/C-G and IRAS 16293-2422

    Full text link
    The chemical evolution of a star- and planet-forming system begins in the prestellar phase and proceeds across the subsequent evolutionary phases. The chemical trail from cores to protoplanetary disks to planetary embryos can be studied by comparing distant young protostars and comets in our Solar System. One particularly chemically rich system that is thought to be analogous to our own is the low-mass IRAS 16293-2422. ALMA-PILS observations have made the study of chemistry on the disk scales (< 100 AU) of this system possible. Under the assumption that comets are pristine tracers of the outer parts of the innate protosolar disk, it is possible to compare the composition of our infant Solar System to that of IRAS 16293-2422. The Rosetta mission has yielded a wealth of unique in situ measurements on comet 67P/C-G, making it the best probe to date. Herein, the initial comparisons in terms of the chemical composition and isotopic ratios are summarized. Much work is still to be carried out in the future as the analysis of both of these data sets is still ongoing.Comment: To appear in "Astrochemistry VII -- Through the Cosmos from Galaxies to Planets", proceedings of the IAU Symposium No. 332, 2017, Puerto Varas, Chile. M. Cunningham, T. Millar and Y. Aikawa, eds. (6 pages

    Sex differences in HIV effects on visual memory among substance-dependent individuals

    Get PDF
    HIV’s effects on episodic memory have not been compared systematically between male and female substance-dependent individuals. We administered the Brief Visuospatial Memory Test–Revised (BVMT–R) to 280 substance-dependent HIV+ and HIV– men and women. Groups were comparable on demographic, substance use, and comorbid characteristics. There were no significant main effects of sex or HIV serostatus on BVMT–R performance, but HIV+ women performed significantly more poorly on delayed recall. This effect was most prominent among cocaine-dependent HIV+ women. Our findings are consistent with recent speculation that memory impairment may be more common among HIV+ women, particularly those with a history of cocaine dependence

    A Comparison of Presolar Isotopic Signatures in Laboratory-Studied Primitive Solar System Materials and Comet 67P/Churyumov-Gerasimenko: New Insights from Light Elements, Halogens, and Noble Gases.

    Get PDF
    Comets are considered the most primitive planetary bodies in our Solar System. ESA's Rosetta mission to Jupiter family comet 67P/Churyumov-Gerasimenko (67P/CG) has provided a wealth of isotope data which expanded the existing data sets on isotopic compositions of comets considerably. In a previous paper (Hoppe et al. in Space Sci. Rev. 214:106, 2018) we reviewed the results for comet 67P/CG from the first four years of data reduction after arrival of Rosetta at the comet in August 2014 and discussed them in the context of respective meteorite data. Since then important new isotope data of several elements, among them the biogenic elements H, C, N, and O, for comet 67P/CG, the Tagish Lake meteorite, and C-type asteroid Ryugu became available which provide new insights into the formation conditions of small planetary bodies in the Solar System's earliest history. To complement the picture on comet 67P/CG and its context to other primitive Solar System materials, especially meteorites, that emerged from our previous paper, we review here the isotopic compositions of H, C, and N in various volatile molecules, of O in water and a suite of other molecules, of the halogens Cl and Br, and of the noble gas Kr in comet 67P/CG. Furthermore, we also review the H isotope data obtained in the refractory organics of the dust grains collected in the coma of 67P/CG. These data are compared with the respective meteoritic and Ryugu data and spectroscopic observations of other comets and extra-solar environments; Cl, Br, and Kr data are also evaluated in the context of a potential late supernova contribution, as suggested by the Si- and S-isotopic data of 67P/CG
    • …
    corecore