8 research outputs found

    Increased parahippocampal and lingual gyrification in first-episode schizophrenia

    Get PDF
    Objective: Cerebral gyrification is attributed to a large extent to genetic and intrauterine/ perinatal factors. Hence, investigating gyrification might offer important evidence for disturbed neurodevelopmental mechanisms in schizophrenia. As an extension of recent ROI analyses of gyrification in schizophrenia the present study is the first to compare on a node-by-node basis mean curvature as a sensitive parameter for the identification of local gyrification changes of the whole cortex in first-episode schizophrenia. Methods: A group of 54 patients with first-episode schizophrenia according to DSM-IV and 54 age and gender matched healthy control subjects were included. All participants underwent high-resolution T1-weighted MRI scans on a 1.5 T scanner. Mean curvature was calculated dividing the sum of the principal curvatures by two at each point of the curved surface as implemented in the Freesurfer Software package. Statistical cortical maps were created to estimate gyrification differences between groups based on a clustering approach. Results: A significantly increased gyrification was observed in first-episode schizophrenia patients relative to controls in a right parahippocampal-lingual cortex area. The cluster encompassed a surface area of 750 mm². A further analysis of cortical thickness of this cluster demonstrated concurrent significant reduced cortical thickness of this area. Conclusions: This is the first study to reveal an aberrant gyrification of the medial surface in first-episode schizophrenia. This finding is in line with substantial evidence showing medial temporal lobe abnormalities in schizophrenia. The present morphometric data provide further support for an early disruption of cortical maturation in schizophrenia

    Reduced cortical thickness is associated with the glutamatergic regulatory gene risk variant DAOA Arg30Lys in schizophrenia

    No full text
    In light of current etiological concepts the glutamatergic system plays an essential role for the pathophysiology of the disorder, offering multiple options for new treatment strategies. The D-amino oxidase activator (DAOA) gene is closely connected to the glutamatergic system and its therapeutic and pathophysiological relevance for schizophrenia is therefore intensively debated. In a further step to shed light on the role of DAOA in schizophrenia, we aimed to investigate the association of the functional DAOA Arg30Lys (rs2391191) variant and cortical thickness in schizophrenia. Cortical thickness was computed by an automated surface-based technique (FreeSurfer) in 52 genotyped patients with schizophrenia and 42 healthy controls. Cortical thickness of the entire cortex was compared between risk carriers and non-risk carriers regarding the Arg30Lys polymorphism in patients and healthy controls on the basis of a node-by-node procedure and an automated clustering approach. Risk carriers with schizophrenia show significantly thinner cortex in two almost inversely arranged clusters on the left and right hemisphere comprising middle temporal, inferior parietal, and lateral occipital cortical areas. The clusters encompass an area of 1174 mm(2) (left) and 1156 mm(2) (right). No significant effect was observed in healthy controls.The finding of our study that the Arg30Lys risk variant is associated with a distinct cortical thinning provides new evidence for the pathophysiological impact of DAOA in schizophrenia. The affected areas are mostly confined to cortical regions with a crucial role in the ToM network and visual processing, which both can be influenced by glutamatergic modulation. Our finding thus underlines the importance of DAOA and related glutamatergic processes as a putative target for therapeutic interventions in schizophrenia
    corecore