264 research outputs found
C-1 Substituted isoquinolines potentiate the antimycobacterial activity of rifampicin and ethambutol
Introduction: The emergence of extensively drug-resistant strains of Mycobacterium tuberculosis threatens decades of progress in the treatment of a disease which remains one of the leading infectious causes of death worldwide. The development of novel antimycobacterial compounds is therefore essential to reinforce the existing antitubercular drug discovery pipeline. There is also interest in new compounds which can synergize with existing antitubercular drugs and can be deployed as part of a combination therapy. This strategy could serve to delay the emergence of resistance to first-line anti-tuberculosis drugs and increase their efficacy against resistant strains of tuberculosis. Previous research has established that several C-1 substituted tetrahydroisoquinolines have antimycobacterial activity. Here we sought to expand our understanding of their antimycobacterial structure activity relationships and their potential to act as adjunct therapies alongside existing antitubercular drugs./
Methods: Three chemical series were synthesised and assayed for their antimycobacterial potency, mammalian cell toxicity, inhibition of whole-cell efflux and synergism with isoniazid, rifampicin, and ethambutol.
Results: Several compounds were found to inhibit the growth of mycobacteria. Potent inhibitors of whole-cell efflux were also identified, as well as compounds which exhibited synergism with rifampicin and ethambutol./
Conclusions: Structure-activity relationships were identified for antimycobacterial potency, improved selectivity, whole cell efflux inhibition and synergism. Potent whole-cell efflux inhibitors and synergistic compounds were identified, suggesting potential development as adjuncts to existing anti-tuberculosis chemotherapy.
Engraftment of neural stem cells in the treatment of spinal cord injury
AbstractSpinal cord injury is one of the main causes of disability in the young population. Based on the underlying pathological changes, many modalities of treatments have been trialed. However, the most promising so far, has been the replacement of lost cellular elements, using stem cells and non-stem cells transplantation. The route of cellular administration and engraftment into the site of injury is an important determining factor for functional outcome, and should be chosen to be safe and efficacious in human patients. Herein, we will review the underlying changes following spinal cord injury, and the possible routes of cellular transplantation
C-1 Substituted isoquinolines potentiate the antimycobacterial activity of rifampicin and ethambutol
IntroductionThe emergence of extensively drug-resistant strains of Mycobacterium tuberculosis threatens decades of progress in the treatment of a disease which remains one of the leading infectious causes of death worldwide. The development of novel antimycobacterial compounds is therefore essential to reinforce the existing antitubercular drug discovery pipeline. There is also interest in new compounds which can synergize with existing antitubercular drugs and can be deployed as part of a combination therapy. This strategy could serve to delay the emergence of resistance to first-line anti-tuberculosis drugs and increase their efficacy against resistant strains of tuberculosis. Previous research has established that several C-1 substituted tetrahydroisoquinolines have antimycobacterial activity. Here we sought to expand our understanding of their antimycobacterial structure activity relationships and their potential to act as adjunct therapies alongside existing antitubercular drugs.MethodsThree chemical series were synthesised and assayed for their antimycobacterial potency, mammalian cell toxicity, inhibition of whole-cell efflux and synergism with isoniazid, rifampicin, and ethambutol.ResultsSeveral compounds were found to inhibit the growth of mycobacteria. Potent inhibitors of whole-cell efflux were also identified, as well as compounds which exhibited synergism with rifampicin and ethambutol.ConclusionsStructure-activity relationships were identified for antimycobacterial potency, improved selectivity, whole cell efflux inhibition and synergism. Potent whole-cell efflux inhibitors and synergistic compounds were identified, suggesting potential development as adjuncts to existing anti-tuberculosis chemotherapy
Transkingdom Networks: A Systems Biology Approach to Identify Causal Members of Host-Microbiota Interactions
Improvements in sequencing technologies and reduced experimental costs have
resulted in a vast number of studies generating high-throughput data. Although
the number of methods to analyze these "omics" data has also increased,
computational complexity and lack of documentation hinder researchers from
analyzing their high-throughput data to its true potential. In this chapter we
detail our data-driven, transkingdom network (TransNet) analysis protocol to
integrate and interrogate multi-omics data. This systems biology approach has
allowed us to successfully identify important causal relationships between
different taxonomic kingdoms (e.g. mammals and microbes) using diverse types of
data
Methods to study splicing from high-throughput RNA Sequencing data
The development of novel high-throughput sequencing (HTS) methods for RNA
(RNA-Seq) has provided a very powerful mean to study splicing under multiple
conditions at unprecedented depth. However, the complexity of the information
to be analyzed has turned this into a challenging task. In the last few years,
a plethora of tools have been developed, allowing researchers to process
RNA-Seq data to study the expression of isoforms and splicing events, and their
relative changes under different conditions. We provide an overview of the
methods available to study splicing from short RNA-Seq data. We group the
methods according to the different questions they address: 1) Assignment of the
sequencing reads to their likely gene of origin. This is addressed by methods
that map reads to the genome and/or to the available gene annotations. 2)
Recovering the sequence of splicing events and isoforms. This is addressed by
transcript reconstruction and de novo assembly methods. 3) Quantification of
events and isoforms. Either after reconstructing transcripts or using an
annotation, many methods estimate the expression level or the relative usage of
isoforms and/or events. 4) Providing an isoform or event view of differential
splicing or expression. These include methods that compare relative
event/isoform abundance or isoform expression across two or more conditions. 5)
Visualizing splicing regulation. Various tools facilitate the visualization of
the RNA-Seq data in the context of alternative splicing. In this review, we do
not describe the specific mathematical models behind each method. Our aim is
rather to provide an overview that could serve as an entry point for users who
need to decide on a suitable tool for a specific analysis. We also attempt to
propose a classification of the tools according to the operations they do, to
facilitate the comparison and choice of methods.Comment: 31 pages, 1 figure, 9 tables. Small corrections adde
Analysis of conglutin seed storage proteins across lupin species using transcriptomic, protein and comparative genomic approaches
Background - The major proteins in lupin seeds are conglutins that have primary roles in supplying carbon, sulphur and nitrogen and energy for the germinating seedling. They fall into four families; α, β, γ and δ. Interest in these conglutins is growing as family members have been shown to have beneficial nutritional and pharmaceutical properties. Results - An in-depth transcriptome and draft genome from the narrow-leafed lupin (NLL; Lupinus angustifolius) variety, Tanjil, were examined and 16 conglutin genes were identified. Using RNAseq data sets, the structure and expression of these 16 conglutin genes were analysed across eight lupin varieties from five lupin species. Phylogenic analysis suggest that the α and γ conglutins diverged prior to lupin speciation while β and δ members diverged both prior and after speciation. A comparison of the expression of the 16 conglutin genes was performed, and in general the conglutin genes showed similar levels of RNA expression among varieties within species, but quite distinct expression patterns between lupin species. Antibodies were generated against the specific conglutin families and immunoblot analyses were used to compare the levels of conglutin proteins in various tissues and during different stages of seed development in NLL, Tanjil, confirming the expression in the seed. This analysis showed that the conglutins were expressed highly at the mature seed stage, in all lupin species, and a range of polypeptide sizes were observed for each conglutin family. Conclusions - This study has provided substantial information on the complexity of the four conglutin families in a range of lupin species in terms of their gene structure, phylogenetic relationships as well as their relative RNA and protein abundance during seed development. The results demonstrate that the majority of the heterogeneity of conglutin polypeptides is likely to arise from post-translational modification from a limited number of precursor polypeptides rather than a large number of different genes. Overall, the results demonstrate a high degree of plasticity for conglutin expression during seed development in different lupin species
A regression analysis of gene expression in ES cells reveals two gene classes that are significantly different in epigenetic patterns
<p>Abstract</p> <p>Background</p> <p>To understand the gene regulatory system that governs the self-renewal and pluripotency of embryonic stem cells (ESCs) is an important step for promoting regenerative medicine. In it, the role of several core transcription factors (TFs), such as Oct4, Sox2 and Nanog, has been intensively investigated, details of their involvement in the genome-wide gene regulation are still not well clarified.</p> <p>Methods</p> <p>We constructed a predictive model of genome-wide gene expression in mouse ESCs from publicly available ChIP-seq data of 12 core TFs. The tag sequences were remapped on the genome by various alignment tools. Then, the binding density of each TF is calculated from the genome-wide bona fide TF binding sites. The TF-binding data was combined with the data of several epigenetic states (DNA methylation, several histone modifications, and CpG island) of promoter regions. These data as well as the ordinary peak intensity data were used as predictors of a simple linear regression model that predicts absolute gene expression. We also developed a pipeline for analyzing the effects of predictors and their interactions.</p> <p>Results</p> <p>Through our analysis, we identified two classes of genes that are either well explained or inefficiently explained by our model. The latter class seems to be genes that are not directly regulated by the core TFs. The regulatory regions of these gene classes show apparently distinct patterns of DNA methylation, histone modifications, existence of CpG islands, and gene ontology terms, suggesting the relative importance of epigenetic effects. Furthermore, we identified statistically significant TF interactions correlated with the epigenetic modification patterns.</p> <p>Conclusions</p> <p>Here, we proposed an improved prediction method in explaining the ESC-specific gene expression. Our study implies that the majority of genes are more or less directly regulated by the core TFs. In addition, our result is consistent with the general idea of relative importance of epigenetic effects in ESCs.</p
Transcriptome Profiling of Bovine Milk Oligosaccharide Metabolism Genes Using RNA-Sequencing
This study examines the genes coding for enzymes involved in bovine milk oligosaccharide metabolism by comparing the oligosaccharide profiles with the expressions of glycosylation-related genes. Fresh milk samples (n = 32) were collected from four Holstein and Jersey cows at days 1, 15, 90 and 250 of lactation and free milk oligosaccharide profiles were analyzed. RNA was extracted from milk somatic cells at days 15 and 250 of lactation (n = 12) and gene expression analysis was conducted by RNA-Sequencing. A list was created of 121 glycosylation-related genes involved in oligosaccharide metabolism pathways in bovine by analyzing the oligosaccharide profiles and performing an extensive literature search. No significant differences were observed in either oligosaccharide profiles or expressions of glycosylation-related genes between Holstein and Jersey cows. The highest concentrations of free oligosaccharides were observed in the colostrum samples and a sharp decrease was observed in the concentration of free oligosaccharides on day 15, followed by progressive decrease on days 90 and 250. Ninety-two glycosylation-related genes were expressed in milk somatic cells. Most of these genes exhibited higher expression in day 250 samples indicating increases in net glycosylation-related metabolism in spite of decreases in free milk oligosaccharides in late lactation milk. Even though fucosylated free oligosaccharides were not identified, gene expression indicated the likely presence of fucosylated oligosaccharides in bovine milk. Fucosidase genes were expressed in milk and a possible explanation for not detecting fucosylated free oligosaccharides is the degradation of large fucosylated free oligosaccharides by the fucosidases. Detailed characterization of enzymes encoded by the 92 glycosylation-related genes identified in this study will provide the basic knowledge for metabolic network analysis of oligosaccharides in mammalian milk. These candidate genes will guide the design of a targeted breeding strategy to optimize the content of beneficial oligosaccharides in bovine milk
Clinical features of headache associated with mobile phone use: a cross-sectional study in university students
<p>Abstract</p> <p>Background</p> <p>Headache has been reported to be associated with mobile phone (MP) use in some individuals. The causal relationship between headache associated with MP use (HAMP) and MP use is currently undetermined. Identifying the clinical features of HAMP may help in clarifying the pathophysiology of HAMP and in managing symptoms of individuals with HAMP. The aim of the present study is to describe the clinical features of HAMP.</p> <p>Methods</p> <p>A 14-item questionnaire investigating MP use and headache was administered to 247 medical students at Hallym University, Korea. Individual telephone interviews were subsequently conducted with those participants who reported HAMP more than 10 times during the last 1 year on the clinical features of HAMP. We defined HAMP as a headache attack during MP use or within 1 hour after MP use.</p> <p>Results</p> <p>In total, 214 (86.6%) students completed and returned the questionnaire. Forty (18.9%) students experienced HAMP more than 10 times during the last 1 year in the questionnaire survey. In subsequent telephone interviews, 37 (97.4%) interviewed participants reported that HAMP was triggered by prolonged MP use. HAMP was usually dull or pressing in quality (30 of 38, 79.0%), localised ipsilateral to the side of MP use (32 of 38, 84.2%), and associated with a burning sensation (24 of 38, 63.2%).</p> <p>Conclusion</p> <p>We found that HAMP usually showed stereotyped clinical features including mild intensity, a dull or pressing quality, localisation ipsilateral to the side of MP use, provocation by prolonged MP use and often accompanied by a burning sensation.</p
A Powerful Method for Transcriptional Profiling of Specific Cell Types in Eukaryotes: Laser-Assisted Microdissection and RNA Sequencing
The acquisition of distinct cell fates is central to the development of multicellular organisms and is largely mediated by gene expression patterns specific to individual cells and tissues. A spatially and temporally resolved analysis of gene expression facilitates the elucidation of transcriptional networks linked to cellular identity and function. We present an approach that allows cell type-specific transcriptional profiling of distinct target cells, which are rare and difficult to access, with unprecedented sensitivity and resolution. We combined laser-assisted microdissection (LAM), linear amplification starting from <1 ng of total RNA, and RNA-sequencing (RNA-Seq). As a model we used the central cell of the Arabidopsis thaliana female gametophyte, one of the female gametes harbored in the reproductive organs of the flower. We estimated the number of expressed genes to be more than twice the number reported previously in a study using LAM and ATH1 microarrays, and identified several classes of genes that were systematically underrepresented in the transcriptome measured with the ATH1 microarray. Among them are many genes that are likely to be important for developmental processes and specific cellular functions. In addition, we identified several intergenic regions, which are likely to be transcribed, and describe a considerable fraction of reads mapping to introns and regions flanking annotated loci, which may represent alternative transcript isoforms. Finally, we performed a de novo assembly of the transcriptome and show that the method is suitable for studying individual cell types of organisms lacking reference sequence information, demonstrating that this approach can be applied to most eukaryotic organisms
- …