130 research outputs found

    Crossed beam studies of ion-molecule reactions.

    Get PDF
    A new crossed beam instrument for the study of ion-molecule collision processes is described. During the development work a novel method of focussing an ion beam from a quadrupole mass filter was devised. Using an electrostatic octopole lens it is possible to obtain low energy ion beams with narrow energy distributions and with intensities and angular distributions close to the fundamental space charge limit. The aim of this work has been to investigate the dynamics of the reactions of diatomic ions with diatomic molecules. The results of a detailed study of the reactions CO+ + O2 = CO+2 + O CO+ + NO = CO+2 + N CO+ + NO = (NCO)+ + O are presented and discussed. All the reactions were found to proceed by a direct mechanism over the energy range studied although there is substantial evidence for the coupling of the motion of all atoms in reactive collisions. At high energy the total cross sections decline as the dynamics become dominated by product stability restrictions and there is evidence for the formation of electronically excited product

    Ion Funnels for the Masses: Experiments and Simulations with a Simplified Ion Funnel

    Get PDF
    A modified ion funnel is described. Counterintuitively, increased spacing between electrodes results in enhanced “focusing” of the ions through the funnel. Consequently, the internal diameter (i.d.) of the funnel need not decrease to the conductance limit (as in previous designs). A simple dc-only lens, which also serves as the conductance limit, combined with the natural flow of gas is used to extract the ions from the funnel. Ions with mass to charge ratios varying between 75 and 3000 m/z are passed through the funnel with no apparent discrimination. The funnel can be operated under mild conditions that preserve weakly bound noncovalent complexes. After testing several designs, a thin closely spaced dc lens was found to be the best solution for extracting ions. A simple method for simulating ion trajectories at nonzero pressures based on ion mobility and explicit diffusion is described. This theoretical approach was used to design and calculate ion trajectories for the modified funnel presented here. Finally, the increased spacing between electrodes in the current funnel significantly relaxes machining constraints, reduces cost, and enhances ease of use versus previous funnel designs

    Resolving Adeno-Associated Viral Particle Diversity With Charge Detection Mass Spectrometry

    Get PDF
    Recombinant adeno-associated viruses (AAVs) are promising vectors for human gene therapy. However, current methods for evaluating AAV particle populations and vector purity are inefficient and low resolution. Here, we show that charge detection mass spectrometry (CDMS) can resolve capsids that contain the entire vector genome from those that contain partial genomes and from empty capsids. Measurements were performed for both single-stranded and self-complementary genomes. The self-complementary AAV vector preparation appears to contain particles with partially truncated genomes averaging at half the genome length. Comparison to results from electron microscopy with manual particle counting shows that CDMS has no significant mass discrimination in the relevant mass range (after a correction for the ion velocity is taken into account). Empty AAV capsids are intrinsically heterogeneous, and capsids from different sources have slightly different masses. However, the average masses of both the empty and full c..

    Correlation between the latent heats and cohesive energies of metal clusters

    Get PDF
    Producción CientíficaDissociation energies have been determined for Al_n^+ clusters (n = 25–83) using a new experimental approach that takes into account the latent heat of melting. According to the arguments presented here, the cohesive energies of the solidlike clusters are made up of contributions from the dissociation energies of the liquidlike clusters and the latent heats for melting. The size-dependent variations in the measured dissociation energies of the liquidlike clusters are small and the variations in the cohesive energies of solidlike clusters result almost entirely from variations in the latent heats for melting. To compare with the measured cohesive energies, density-functional theory has been used to search for the global minimum energy structures. Four groups of low energy structures were found: Distorted decahedral fragments, fcc fragments, fcc fragments with stacking faults, and “disordered.” For most cluster sizes, the measured and calculated cohesive energies are strongly correlated. The calculations show that the variations in the cohesive energies (and the latent heats) result from a combination of geometric and electronic shell effects. For some clusters an electronic shell closing is responsible for the enhanced cohesive energy and latent heat (e.g., n = 37), while for others (e.g., n = 44) a structural shell closing is the cause

    Electronic effects on melting: Comparison of aluminum cluster anions and cations

    Get PDF
    Producción CientíficaHeat capacities have been measured as a function of temperature for aluminum cluster anions with 35–70 atoms. Melting temperatures and latent heats are determined from peaks in the heat capacities; cohesive energies are obtained for solid clusters from the latent heats and dissociation energies determined for liquid clusters. The melting temperatures, latent heats, and cohesive energies for the aluminum cluster anions are compared to previous measurements for the corresponding cations. Density functional theory calculations have been performed to identify the global minimum energy geometries for the cluster anions. The lowest energy geometries fall into four main families: distorted decahedral fragments, fcc fragments, fcc fragments with stacking faults, and “disordered” roughly spherical structures. The comparison of the cohesive energies for the lowest energy geometries with the measured values allows us to interpret the size variation in the latent heats. Both geometric and electronic shell closings contribute to the variations in the cohesive energies (and latent heats), but structural changes appear to be mainly responsible for the large variations in the melting temperatures with cluster size. The significant charge dependence of the latent heats found for some cluster sizes indicates that the electronic structure can change substantially when the cluster melts

    Substituting a copper atom modifies the melting of aluminum clusters

    Get PDF
    Producción CientíficaHeat capacities have been measured for Al(n−1)Cu− clusters (n = 49–62) and compared with results for pure Aln+ clusters. Al(n−1)Cu− and Aln+ have the same number of atoms and the same number of valence electrons (excluding the copper d electrons). Both clusters show peaks in their heat capacities that can be attributed to melting transitions; however, substitution of an aluminum atom by a copper atom causes significant changes in the melting behavior. The sharp drop in the melting temperature that occurs between n = 55 and 56 for pure aluminum clusters does not occur for the Al(n−1)Cu− analogs. First-principles density-functional theory has been used to locate the global minimum energy structures of the doped clusters. The results show that the copper atom substitutes for an interior aluminum atom, preferably one with a local face-centered-cubic environment. Substitution does not substantially change the electronic or geometric structures of the host cluster unless there are several Aln+ isomers close to the ground state. The main structural effect is a contraction of the bond lengths around the copper impurity, which induces both a contraction of the whole cluster and a stress redistribution between the Al–Al bonds. The size dependence of the substitution energy is correlated with the change in the latent heat of melting on substitution
    • 

    corecore