16,348 research outputs found

    Simulating terahertz quantum cascade lasers: Trends from samples from different labs

    Get PDF
    We present a systematic comparison of the results from our non-equilibrium Green's function formalism with a large number of AlGaAs-GaAs terahertz quantum cascade lasers previously published in the literature. Employing identical material and simulation parameters for all samples, we observe that discrepancies between measured and calculated peak currents are similar for samples from a given group. This suggests that the differences between experiment and theory are partly due to a lacking reproducibility for devices fabricated at different laboratories. Varying the interface roughness height for different devices, we find that the peak current under lasing operation hardly changes, so that differences in interface quality appear not to be the sole reason for the lacking reproducibility.Comment: 9 pages, 6 figures; section VI with 2 figures added in v2; accepted for publication in J. Appl. Phy

    Superlattice gain in positive differential conductivity region

    Full text link
    We analyze theoretically a superlattice structure proposed by A. Andronov et al. [JETP Lett 102, 207 (2015)] to give Terahertz gain for an operation point with positive differential conductivity. Here we confirm the existence of gain and show that an optimized structure displays gain above 20 cm−1^{-1} at low temperatures, so that lasing may be observable. Comparing a variety of simulations, this gain is found to be strongly affected by elastic scattering. It is shown that the dephasing modifies the nature of the relevant states, so that the common analysis based on Wannier-Stark states is not reliable for a quantitative description of the gain in structures with extremely diagonal transitions.Comment: 4 pages, 5 figure

    Mathematical Models and Biological Meaning: Taking Trees Seriously

    Get PDF
    We compare three basic kinds of discrete mathematical models used to portray phylogenetic relationships among species and higher taxa: phylogenetic trees, Hennig trees and Nelson cladograms. All three models are trees, as that term is commonly used in mathematics; the difference between them lies in the biological interpretation of their vertices and edges. Phylogenetic trees and Hennig trees carry exactly the same information, and translation between these two kinds of trees can be accomplished by a simple algorithm. On the other hand, evolutionary concepts such as monophyly are represented as different mathematical substructures are represented differently in the two models. For each phylogenetic or Hennig tree, there is a Nelson cladogram carrying the same information, but the requirement that all taxa be represented by leaves necessarily makes the representation less efficient. Moreover, we claim that it is necessary to give some interpretation to the edges and internal vertices of a Nelson cladogram in order to make it useful as a biological model. One possibility is to interpret internal vertices as sets of characters and the edges as statements of inclusion; however, this interpretation carries little more than incomplete phenetic information. We assert that from the standpoint of phylogenetics, one is forced to regard each internal vertex of a Nelson cladogram as an actual (albeit unsampled) species simply to justify the use of synapomorphies rather than symplesiomorphies.Comment: 15 pages including 6 figures [5 pdf, 1 jpg]. Converted from original MS Word manuscript to PDFLaTe

    Nonlinear response of quantum cascade structures

    Get PDF
    The gain spectrum of a terahertz quantum cascade laser is analysed by a non equilibrium Green's functions approach. Higher harmonics of the response function were retrievable, providing a way to approach nonlinear phenomena in quantum cascade lasers theoretically. Gain is simulated under operation conditions and results are presented both for linear response and strong laser fields. An iterative way of reconstructing the field strength inside the laser cavity at lasing conditions is described using a measured value of the level of the losses of the studied system. Comparison with recent experimental data from time-domain-spectroscopy indicates that the experimental situation is beyond linear response.Comment: 4 pages, 3 figures included in text, to appear in Applied Physics Letter

    Theoretical properties of quasi-stationary Monte Carlo methods

    Full text link
    This paper gives foundational results for the application of quasi-stationarity to Monte Carlo inference problems. We prove natural sufficient conditions for the quasi-limiting distribution of a killed diffusion to coincide with a target density of interest. We also quantify the rate of convergence to quasi-stationarity by relating the killed diffusion to an appropriate Langevin diffusion. As an example, we consider in detail a killed Ornstein--Uhlenbeck process with Gaussian quasi-stationary distribution.Comment: 27 pages, 1 figure. Final version of accepted paper. Minor typos correcte

    Identifying capacitive and inductive loss in lumped element superconducting hybrid titanium nitride/aluminum resonators

    Full text link
    We present a method to systematically locate and extract capacitive and inductive losses in superconducting resonators at microwave frequencies by use of mixed-material, lumped element devices. In these devices, ultra-low loss titanium nitride was progressively replaced with aluminum in the inter-digitated capacitor and meandered inductor elements. By measuring the power dependent loss at 50 mK as the Al-TiN fraction in each element is increased, we find that at low electric field, i.e. in the single photon limit, the loss is two level system in nature and is correlated with the amount of Al capacitance rather than the Al inductance. In the high electric field limit, the remaining loss is linearly related to the product of the Al area times its inductance and is likely due to quasiparticles generated by stray radiation. At elevated temperature, additional loss is correlated with the amount of Al in the inductance, with a power independent TiN-Al interface loss term that exponentially decreases as the temperature is reduced. The TiN-Al interface loss is vanishingly small at the 50 mK base temperature.Comment: 10 pages, 5 figure

    Coherence in a transmon qubit with epitaxial tunnel junctions

    Full text link
    We developed transmon qubits based on epitaxial tunnel junctions and interdigitated capacitors. This multileveled qubit, patterned by use of all-optical lithography, is a step towards scalable qubits with a high integration density. The relaxation time T1 is .72-.86mu sec and the ensemble dephasing time T2 is slightly larger than T1. The dephasing time T2 (1.36mu sec) is nearly energy-relaxation-limited. Qubit spectroscopy yields weaker level splitting than observed in qubits with amorphous barriers in equivalent-size junctions. The qubit's inferred microwave loss closely matches the weighted losses of the individual elements (junction, wiring dielectric, and interdigitated capacitor), determined by independent resonator measurements

    Evidence for Ubiquitous Collimated Galactic-Scale Outflows along the Star-Forming Sequence at z~0.5

    Full text link
    We present an analysis of the MgII 2796, 2803 and FeII 2586, 2600 absorption line profiles in individual spectra of 105 galaxies at 0.3<z<1.4. The galaxies, drawn from redshift surveys of the GOODS fields and the Extended Groth Strip, fully sample the range in star formation rates (SFRs) occupied by the star-forming sequence with stellar masses log M_*/M_sun > 9.5 at 0.3<z<0.7. Using the Doppler shifts of the MgII and FeII absorption lines as tracers of cool gas kinematics, we detect large-scale winds in 66+/-5% of the galaxies. HST/ACS imaging and our spectral analysis indicate that the outflow detection rate depends primarily on galaxy orientation: winds are detected in ~89% of galaxies having inclinations (i) <30 degrees (face-on), while the wind detection rate is only ~45% in objects having i>50 degrees (edge-on). Combined with the comparatively weak dependence of the wind detection rate on intrinsic galaxy properties, this suggests that biconical outflows are ubiquitous in normal, star-forming galaxies at z~0.5. We find that the wind velocity is correlated with host galaxy M_* at 3.4-sigma significance, while the equivalent width of the flow is correlated with host galaxy SFR at 3.5-sigma significance, suggesting that hosts with higher SFR may launch more material into outflows and/or generate a larger velocity spread for the absorbing clouds. Assuming that the gas is launched into dark matter halos with simple, isothermal density profiles, the wind velocities measured for the bulk of the cool material (~200-400 km/s) are sufficient to enable escape from the halo potentials only for the lowest-M_* systems in the sample. However, the outflows typically carry sufficient energy to reach distances of >50 kpc, and may therefore be a viable source of cool material for the massive circumgalactic medium observed around bright galaxies at z~0. [abridged]Comment: Submitted to ApJ. 61 pages, 25 figures, 4 tables, 4 appendices. Uses emulateapj forma
    • …
    corecore