3 research outputs found

    Frictional Coulomb drag in strong magnetic fields

    Get PDF
    A treatment of frictional Coulomb drag between two 2-dimensional electron layers in a strong perpendicular magnetic field, within the independent electron picture, is presented. Assuming fully resolved Landau levels, the linear response theory expression for the transresistivity ρ21\rho_{21} is evaluated using diagrammatic techniques. The transresistivity is given by an integral over energy and momentum transfer weighted by the product of the screened interlayer interaction and the phase-space for scattering events. We demonstrate, by a numerical analysis of the transresistivity, that for well-resolved Landau levels the interplay between these two factors leads to characteristic features in both the magnetic field- and the temperature dependence of ρ21\rho_{21}. Numerical results are compared with recent experiments.Comment: RevTeX, 34 pages, 8 figures included in tex

    Magneto-Coulomb drag: interplay of electron--electron interactions and Landau quantization

    Get PDF
    We use the Kubo formalism to calculate the transresistivity ρ21\rho_{21} for carriers in coupled quantum wells in a large perpendicular magnetic field BB. We find that ρ21\rho_{21} is enhanced by approximately 50--100 times over that of the B=0 case in the interplateau regions of the integer quantum Hall effect. The presence of both electron--electron interactions and Landau quantization results in (i) a twin-peaked structure of ρ21(B)\rho_{21}(B) in the inter-plateau regions at low temperatures, and, (ii) for the chemical potential at the center of a Landau level band, a peaked temperature dependence of ρ21(T)/T2\rho_{21}(T)/T^2.Comment: 4 pages, RevTeX, 4 PS figures in text using eps
    corecore