33 research outputs found

    An Isolated, Antegrade, Perfused, Peroneal Nerve Anterior Tibialis Muscle Model in the Rat A Novel Model Developed to Study the Factors Governing the Time Course of Action of Neuromuscular Blocking Agents

    Get PDF
    Background: A model of an antegrade, perfused, isolated rat peroneal nerve anterior tibial muscle was developed to study potentially important factors governing the time course of action of (nondepolarizing) neuromuscular blocking agents such as concentration, blood flow, and temperature. The model allows observation of the effects of selective changes in these factors. Methods: The authors isolated the anterior tibial muscle and cannulated the anterior tibial artery and vein, providing a way for single-pass perfusion with blood from a donor rat. A force transducer was connected to the tibialis anterior muscle and a stimulator was connected to the tibial nerve. The influence of intrinsic potency (EC 90 ) and muscle blood flow rate on the time course of pancuronium and rocuronium was investigated. Results: The model remained stable for at least 4 h with respect to twitch height, muscle structure and function, and blood chemistry. Doubling the muscle-blood flow resulted in a significantly faster onset and offset for both pancuronium and rocuronium. Trebling the intrinsic potency (EC 90 ) was not associated with significant changes in the time course of action of the relaxants. Conclusion: The authors developed and validated a model that allows us to study biophase kinetics of neuromuscular blocking agents in the anterior tibial muscle of the rat. In this model, muscle-blood flow rather than EC 90 appears to predominantly determine the onset and offset time of nondepolarizing muscle relaxants

    S1P(1) Receptor Modulation Preserves Vascular Function in Mesenteric and Coronary Arteries after CPB in the Rat Independent of Depletion of Lymphocytes

    Get PDF
    BACKGROUND: Cardiopulmonary bypass (CPB) may induce systemic inflammation and vascular dysfunction. Sphingosine 1-phosphate (S1P) modulates various vascular and immune responses. Here we explored whether agonists of the S1P receptors, FTY720 and SEW2871 improve vascular reactivity after CPB in the rat. METHODS: Experiments were done in male Wistar rats (total n = 127). Anesthesia was induced by isoflurane (2.5-3%) and maintained by fentanyl and midazolam during CPB. After catheterization of the left femoral artery, carotid artery and the right atrium, normothermic extracorporeal circulation was instituted for 60 minutes. In the first part of the study animals were euthanized after either 1 hour, 1 day, 2 or 5 days of the recovery period. In second part of the study animals were euthanized after 1 day of postoperative period. We evaluated the contractile response to phenylephrine (mesenteric arteries) or to serotonin (coronary artery) and vasodilatory response to acethylcholine (both arteries). RESULTS: Contractile responses to phenylephrine were reduced at 1 day recovery after CPB and Sham as compared to healthy control animals (Emax, mN: 7.9 ± 1.9, 6.5 ± 1.5, and 11.3 ± 1.3, respectively). Mainly FTY720, but not SEW2871, caused lymphopenia in both Sham and CPB groups. In coronary and mesenteric arteries, both FTY720 and SEW2871 normalized serotonin and phenylephrine-mediated vascular reactivity after CPB (p<0.05) and FTY720 increased relaxation to acetylcholine as compared with untreated rats that underwent CPB. CONCLUSION: Pretreatment with FTY720 or SEW2871 preserves vascular function in mesenteric and coronary artery after CPB. Therefore, pharmacological activation of S1P1 receptors may provide a promising therapeutic intervention to prevent CPB-related vascular dysfunction in patients

    Dopamine treatment attenuates acute kidney injury in a rat model of deep hypothermia and rewarming: The role of renal H2S-producing enzymes

    No full text
    Hypothermia and rewarming produces organ injury through the production of reactive oxygen species. We previously found that dopamine prevents hypothermia and rewarming-induced apoptosis in cultured cells through increased expression of the H2S-producing enzyme cystathionine beta-Synthase (CBS). Here, we investigate whether dopamine protects the kidney in deep body cooling and explore the role of H2S-producing enzymes in an in vivo rat model of deep hypothermia and rewarming. In anesthetized Wistar rats, body temperature was decreased to 15 degrees C for 3 h, followed by rewarming for 1 h. Rats (n > 5 per group) were treated throughout the procedure with vehicle or dopamine infusion, and in the presence or absence of a non-specific inhibitor of H2S-producing enzymes, amino-oxyacetic acid (AOAA). Kidney damage and renal expression of three H2S-producing enzymes (CBS, CSE and 3-MST) was quantified and serum H2S level measured. Hypothermia and rewarming induced renal damage, evidenced by increased serum creatinine, renal reactive oxygen species production, KIM-1 expression and influx of immune cells, which was accompanied by substantially lowered renal expression of CBS, CSE, and 3-MST and lowered serum H(2)Slevels. Infusion of dopamine fully attenuated renal damage and maintained expression of H2S-producing enzymes, while normalizing serum H2S. AOAA further decreased the expression of H2S-producing enzymes and serum H2S level, and aggravated renal damage. Hence, dopamine preserves renal integrity during deep hypothermia and rewarming likely by maintaining the expression of renal H2S-producing enzymes and serum H2S. (C) 2015 Elsevier B.V. All rights reserved

    Novel approach to repeated arterial blood sampling in small animal PET:Application in a test-retest study with the adenosine A1 receptor ligand [C-11]MPDX

    Get PDF
    Small animal positron emission tomography (PET) can be used to detect small changes in neuroreceptor availability. This often requires rapid arterial blood sampling. However, current catheterization procedures do not allow repeated blood sampling. We have developed a procedure which allows arterial sampling on repeated occasions in the same animal.Eleven male Wistar rats were two times catheterized via a superficial branch of a femoral artery and scanned with [C-11]MPDX and blood sampling. PET images were co-registered to a magnetic resonance imaging (MRI) template. Regional tracer distribution volumes (V (T)) in the brain were calculated by the Logan analysis. The procedure was repeated after 1 week.Surgery was successful in 90 % of the cases, and discomfort was minor. The V (T) data showed small differences between test and retest, low between subject variability, and a strong agreement between and within subjects.Repeated quantitative imaging with a high reproducibility is possible with this approach.</p

    The 6-hydroxychromanol derivative SUL-109 ameliorates renal injury after deep hypothermia and rewarming in rats

    No full text
    Background. Mitochondrial dysfunction plays an important role in kidney damage in various pathologies, including acute and chronic kidney injury and diabetic nephropathy. In addition to the well-studied ischaemia/reperfusion (I/R) injury, hypothermia/rewarming (H/R) also inflicts acute kidney injury. Substituted 6-hydroxychromanols are a novel class of mitochondrial medicines that ameliorate mitochondrial oxidative stress and protect the mitochondrial network. To identify a novel 6-hydroxychromanol that protects mitochondrial structure and function in the kidney during H/R, we screened multiple compounds in vitro and subsequently assessed the efficacy of the 6-hydroxychromanol derivatives SUL-109 and SUL-121 in vivo to protect against kidney injury after H/R in rats. Methods. Human proximal tubule cell viability was assessed following exposure to H/R for 48/4 h in the presence of various 6-hydroxychromanols. Selected compounds (SUL-109, SUL-121) or vehicle were administered to ketamine-anaesthetized male Wistar rats (IV 135 mu g/kg/h) undergoing H/R at 15 degrees C for 3 h followed by rewarming and normothermia for 1 h. Metabolic parameters and body temperature were measured throughout. In addition, renal function, renal injury, histopathology and mitochondrial fitness were assessed. Results. H/R injury in vitro lowered cell viability by 94 +/- 61%, which was counteracted dose-dependently by multiple 6-hydroxy-chomanols derivatives. In vivo, H/R in rats showed kidney injury molecule 1 expression in the kidney and tubular dilation, accompanied by double-strand DNA breaks and protein nitrosylation. SUL-109 and SUL-121 ameliorated tubular kidney damage, preserved mitochondrial mass and maintained cortical adenosine 50-triphosphate (ATP) levels, although SUL-121 did not reduce protein nitrosylation. Conclusions. The substituted 6-hydroxychromanols SUL-109 and SUL-121 ameliorate kidney injury during in vivo H/R by preserving mitochondrial mass, function and ATP levels. In addition, both 6-hydroxychromanols limit DNA damage, but only SUL-109 also prevented protein nitrosylation in tubular cells. Therefore SUL-109 offers a promising therapeutic strategy to preserve kidney mitochondrial function

    The 6-hydroxychromanol derivative SUL-109 ameliorates renal injury after deep hypothermia and rewarming in rats

    Get PDF
    Background. Mitochondrial dysfunction plays an important role in kidney damage in various pathologies, including acute and chronic kidney injury and diabetic nephropathy. In addition to the well-studied ischaemia/reperfusion (I/R) injury, hypothermia/rewarming (H/R) also inflicts acute kidney injury. Substituted 6-hydroxychromanols are a novel class of mitochondrial medicines that ameliorate mitochondrial oxidative stress and protect the mitochondrial network. To identify a novel 6-hydroxychromanol that protects mitochondrial structure and function in the kidney during H/R, we screened multiple compounds in vitro and subsequently assessed the efficacy of the 6-hydroxychromanol derivatives SUL-109 and SUL-121 in vivo to protect against kidney injury after H/R in rats. Methods. Human proximal tubule cell viability was assessed following exposure to H/R for 48/4 h in the presence of various 6-hydroxychromanols. Selected compounds (SUL-109, SUL-121) or vehicle were administered to ketamine-anaesthetized male Wistar rats (IV 135 mu g/kg/h) undergoing H/R at 15 degrees C for 3 h followed by rewarming and normothermia for 1 h. Metabolic parameters and body temperature were measured throughout. In addition, renal function, renal injury, histopathology and mitochondrial fitness were assessed. Results. H/R injury in vitro lowered cell viability by 94 +/- 61%, which was counteracted dose-dependently by multiple 6-hydroxy-chomanols derivatives. In vivo, H/R in rats showed kidney injury molecule 1 expression in the kidney and tubular dilation, accompanied by double-strand DNA breaks and protein nitrosylation. SUL-109 and SUL-121 ameliorated tubular kidney damage, preserved mitochondrial mass and maintained cortical adenosine 50-triphosphate (ATP) levels, although SUL-121 did not reduce protein nitrosylation. Conclusions. The substituted 6-hydroxychromanols SUL-109 and SUL-121 ameliorate kidney injury during in vivo H/R by preserving mitochondrial mass, function and ATP levels. In addition, both 6-hydroxychromanols limit DNA damage, but only SUL-109 also prevented protein nitrosylation in tubular cells. Therefore SUL-109 offers a promising therapeutic strategy to preserve kidney mitochondrial function
    corecore