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RESEARCH ARTICLE
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Abstract
Purpose: Small animal positron emission tomography (PET) can be used to detect small
changes in neuroreceptor availability. This often requires rapid arterial blood sampling. However,
current catheterization procedures do not allow repeated blood sampling. We have developed a
procedure which allows arterial sampling on repeated occasions in the same animal.
Procedures: Eleven male Wistar rats were two times catheterized via a superficial branch of a
femoral artery and scanned with [11C]MPDX and blood sampling. PET images were co-
registered to a magnetic resonance imaging (MRI) template. Regional tracer distribution
volumes (VT) in the brain were calculated by the Logan analysis. The procedure was repeated
after 1 week.
Results: Surgery was successful in 90 % of the cases, and discomfort was minor. The VT data
showed small differences between test and retest, low between subject variability, and a strong
agreement between and within subjects.
Conclusion: Repeated quantitative imaging with a high reproducibility is possible with this
approach.

Key words: Test-retest reproducibility, Positron emission tomography, Adenosine A1 receptor,
Brain, Arterial blood sampling

Introduction
Small animal positron emission tomography (PET) is a well-
established method to visualize neuroreceptors, protein

aggregates, ion channels, enzymes, or transporter proteins
in the brain and other organs, using radiolabeled com-
pounds. In many cases, blood sampling is required to
determine the dynamics of radiotracer clearance and metab-
olism for quantification of specific binding in the tissue of
interest, especially when a reference tissue as input for aCorrespondence to: Aren van Waarde; e-mail: a.van.waarde@umcg.nl

http://crossmark.crossref.org/dialog/?doi=10.1007/s11307-016-0954-9&domain=pdf


reference tissue model (RTM) is not available [1–3].
Catheterization of an artery is needed for rapid collection
of arterial plasma during the scan. Plasma samples are used
to measure radioactivity and to determine the ratio of intact
parent tracer and radioactive metabolites in these samples to
acquire an input function for the analysis. For arterial plasma
collection, the femoral arteries are often used [4–6]. The
arteries are easy accessible, required materials for the
catheterization are cheap, and the impaired blood flow does
not affect major organs like the brain or abdomen, but
because of the invasiveness of this technique, rats must be
euthanized after the scan [4–6]. This makes longitudinal
studies with multiple scans in the same animal impossible.

For this reason, we have developed a cheap and
technically easy surgical procedure which has the same
benefits as the commonly used catheterization of a femoral
artery but is minimally invasive and allows repeated
catheterization and blood collection. Here, we describe this
procedure and use the adenosine A1 receptor ligand
[11C]MPDX to validate it. In order to assess variability and
repeatability of the PET scans, we performed a test-retest
study in which 11 rats were subjected to the novel surgical
procedure, and two PET scans with the adenosine A1
receptor ligand and rapid arterial blood sampling were made
in each animal, with an interval of 1 week. We show that
repeated quantitative PET scans of neuroreceptors can be
made in the same rat, even when rapid arterial blood
sampling is required.

Materials and Methods

Animals

Male Wistar Unilever rats (8 ± 2 weeks of age) were obtained from
Harlan (Boxmeer, the Netherlands). After delivery, the animals
were acclimated for at least 7 days to recover from the transport and
adapt to the new housing conditions. The rats were housed in
Makrolon cages at a constant temperature of 21 ± 2 °C, maintained
at a 12-h light/12-h dark regime, and fed standard chow ad libitum.

The experimental protocol was approved by the Institutional
Animal Care and Use Committee of Groningen University (File
No. 5841D). All experiments were performed by licensed investi-
gators in compliance with the Law on Animal Experiments of
The Netherlands.

Surgery and Blood Collection

Thirty minutes before the start of each PET scan, each rat was
anesthetized using a mixture of isoflurane and medical air (5 % for
induction, ≤ 2 % for maintenance; Pharmachemie BV, Haarlem, the
Netherlands). The rat was placed on a heating mat connected to an
electronic temperature controller with a set point of 38 °C and was
positioned on its dorsal side. A 26G catheter (0.64 × 19 mm
Terumo) was inserted in one of its tail veins for later injection of
[11C]MPDX. The left hind limb of the rat was stretched out and

fixed. A small (1 to 1.5 cm) incision of the skin (surgical blade no.
15, Swann-Morton REF0205) was made in the lower part of the
thigh from medial to caudal-lateral side, at the height of the patella
(Fig. 1). A small superficial artery (located where the femoral artery
passes over in the saphenous artery) was exposed and fixed with a
medial and a lateral suture (V991H Ethicon). After puncturing the
vessel wall with a needle (29G 0.33 × 12 mm Terumo), a thin tube
(polythene, 0.28 mm inner diameter, 0.61 mm outer diameter,
REF800/100/100 Portex) was inserted and moved up through the
blood vessel until the femoral artery was reached. The wound was
covered with a small piece of wet (0.9 % NaCl solution) gauze. The
tube and catheter were regularly flushed with a warm (37 °C)
solution of saline and 1 % heparin.

Small arterial blood samples (0.1 to 0.15 ml) were manually
collected at 0.17, 0.33, 0.5, 0.67, 0.83, 1, 1.5, 2, 3, 5, 7.5, 10, 15,
30, and 60 min after the start of the PET data acquisition. Drawn
blood was replaced by an equal volume of saline. During the first
minute after the start of tracer injection, this was done by a
continuous infusion of tracer in saline via the venous cannula.
During the period ranging from 1 to 60 min, heparinized saline was
injected via the arterial cannula after the drawing of each blood
sample. The amount of blood which was drawn from the animal (all
samples combined) was less than 10 % of its total blood volume.
Twenty-five microliters of whole blood was collected, and the
remaining sample was centrifuged (5 min at 13,000×g) to obtain
25 μl of plasma. A calibrated gamma counter (CompuGamma
CS1282, LKB-Wallac, Turku, Finland) was used to determine
radioactivity in plasma and whole blood. Results are expressed as
standardized uptake values (SUVs), defined as (plasma activity
concentration [MBq/g] × body weight [g]/injected dose [MBq]).

After the PET scan and blood collection, the tube and catheter
were removed and the artery was closed with three sutures. The
wound was closed with three to five interrupted sutures (V991H
Ethicon). Bupivacaine (Marcaine 0.5 %, AstraZeneca, 2.5 mg/kg,
maximum volume of 0.6 ml) was injected subdermally at the edges
of the wound. After this treatment, the rats were allowed to recover
from anesthesia and surgery in a pre-warmed cage. Scanned rats
were finally returned to their home cages and checked daily for
weight loss, bleeding, infection, and disturbed movement.

Since the superficial artery in the left hind leg was closed, for
the second scan, a catheter was inserted in the superficial branch of
the femoral artery in the right hind limb, or in the main femoral
artery in the left hind limb, as described previously [7].

Radiochemistry

The radioligand [11C]MPDX was prepared as described previously
[7], by reaction of [11C]methyl iodide with the appropriate 1-N-
desmethyl precursor. The decay-corrected radiochemical yield was
35 ± 5 % (based on [11C]methyl iodide). Average specific radioac-
tivity was 85 ± 35 TBq/mmol for the test scan and 93 ± 43 TBq/
mmol for the retest scan. Radiochemical purity was in all cases
greater than 99 %.

PET Scans and Biodistribution Study

The rat was positioned at the center of the ring system of a
microPET Focus 220 camera (Siemens Medical Solutions, USA),
on its dorsal side with the brain in the field of view. Body
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temperature was kept close to normal using a heating mat, an
electronic temperature controller, and a rectal probe. Blood oxygen
levels and heart rate were continuously monitored with a pulse
oximeter (Nonin PulseSense). The fraction of isoflurane in the
inhaled gas mixture and the gas flow were adjusted when blood
oxygen levels and heart rate decreased. A transmission scan
(duration 515 s) was made with a Co-57 point source to correct
the subsequently acquired emission data for attenuation and scatter.

The tracer solution (39 ± 18 MBq [11C]MPDX in 1 ml saline) was
administered during a period of 60 s, using an infusion pump
(Harvard model HA1100DU). Data acquisition by the microPET
camera and the infusion pump were started simultaneously. List
mode data were acquired during a period of 60 min.

Exactly 1 week after the initial scan, a second PET scan with
[11C]MPDX (26 ± 13 MBq) was made which also included arterial
blood sampling. Rats were euthanized after the scan, by removal of

Fig. 1 Pictures taken during the surgical procedure. a Incision in the left hind limb. b Artery is fixed with a medial and lateral
suture. c Catheter is inserted in the artery. d Catheter is secured with two sutures. Artery is closed with a third suture at the
lateral side.
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the heart under deep general anesthesia. Several brain areas
(amygdala, caudate putamen, mesencephalic region, pons, medulla,
cerebellum, olfactory bulb, cortex, hippocampus, hypothalamus,
thalamus, olfactory cortex, and the rest of the brain) were dissected,
and peripheral organs were excised. The collected samples were
weighed, and radioactivity in these samples was measured with a
gamma counter.

Data Analysis and Statistics

The software package MicroPET Manager (Siemens) was used to
reconstruct the data in a dynamic frame sequence of 6 × 10, 4 × 30,
2 × 60, 1 × 120, 1 × 180, 4 × 300, and 3 ×600 s. An Ordered Subset
Expectation Maximization (OSEM2D) reconstruction algorithm with
Fourier rebinning, four iterations, and 16 subsets was employed
obtaining images with 128 × 128 × 95 matrix, pixel width of
0.467 mm, and a slice thickness of 0.796 mm. The program PMOD
version 3.5 (PMOD Technologies Ltd, Zürich, Switzerland) was used
to co-register the [11C]MPDX PET images with a magnetic resonance
imaging (MRI) template [8, 9]. Volumes-of-interest (VOI) for relevant
brain regions (amygdala, caudate putamen, mesencephalic region,
pons, medulla, cerebellum, olfactory bulb, cortex, hippocampus,
hypothalamus, thalamus, olfactory cortex, and the rest of the brain)
were defined based on the Paxinos atlas [10]. Previously acquired
[11C]MPDXmetabolite data were used to correct plasma radioactivity
data for metabolites (see [7], also for experimental details). Plasma
time-activity curves (TAC), whole blood radioactivity, and metabolite
data were used for Logan graphical analysis [11], fit starting at 10 min,
blood volume fixed at 3.6 % [7], a 1 tissue compartment model
(1TCM) fit, and a 2 tissue compartment model (2TCM) fit to calculate
regional tracer distribution volumes (VT). A simplified reference tissue
model (SRTM), with the olfactory bulb as reference region [12], was
applied to calculate tracer binding potential (BPND) [13–15].

To show that the reproducibility of the novel approach is not
affected by the template, summed static [11C]MPDX PET images
were used to create a tracer-specific rat brain template as described
in [9]. The [11C]MPDX PET images were also co-registered with
this PET template to define VOIs and to calculate regional VT with
Logan graphical analysis.

The reproducibility between test and retest was calculated as a
relative difference (Eq. (1)) and as test-retest variability (TRV) (Eq.
(2)) [16]:

Relative difference ¼ 100* Retest
.
Test

� �
–100: ð1Þ

TRV ¼ 100* Test‐Retest½ �
.

Testþ Retestð Þ
.
2

h i
: ð2Þ

Variability was expressed as coefficient of variance (COV) (Eq.
(3)):

COV ¼ 100* SD
.
Mean

� �
: ð3Þ

Fig. 2 Daily body weight between the test (day 0) and retest
scans (day 7). Error bars indicate SD.

Fig. 3 a Average plasma input curve for the test and retest
scans. Time-activity curves for different brain regions in the b
test and c retest scans. Error bars indicate SD.
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The reliability of the measurements between and within
subjects (MSWS mean square between and within subjects)
was expressed as intraclass correlation coefficient (ICC) (Eq.
(4)). To calculate ICC, we used the two-way mixed model with
the absolute agreement type and a confidence interval of 95 %.
ICC values between 0.0 and 0.2, 0.3–0.4, 0.5–0.6, 0.70–0.8,
and 0.9–1.0 are, respectively, considered as slight, fair,
moderate, substantial, and almost perfect agreement [17].

ICC ¼ MSBS‐MSWS½ �
.

MSBSþ n‐1ð Þ*MSWS½ �: ð4Þ

All data are presented as mean ± SD. Differences between
the test and retest scans (injected dose, specific activity, tracer
purity, calculated VT) were examined using a paired t test using
SPSS (IBM SPSS Statistics 22). VT values calculated from PET
images co-registered with a MRI or a PET template and %
relative difference, TRV, and ICC observed using these
different templates were also compared using a paired t test.
p values G0.05 were considered statistically significant.

Results

Surgery

In two animals, the superficial branch of the femoral artery
was too thin for placement of a catheter, resulting in failure
of the experiment. Surgery was successful in 82 % (9 out of
11) of the test scans and in 100 % (9 out of 9) of the retest
procedures, thus in 90 % of all attempts. Daily inspection of
the animals showed that a minor drop of body weight
occurred after the initial scan, most likely due to some
discomfort, but the normal rate of weight gain was resumed
after 2 days (Fig. 2). No visual signs of bleeding, infection,
or disturbed movement were detected, and the wound closed
within 2 days, leaving only minor scar tissue. However, at
the beginning of our study, two rats managed to remove
their sutures on the day of the test scan, after they had woken
up from anesthesia. Thus, it was necessary to anesthetize
them again and to resuture their wounds. Data of these
animals were excluded from the final dataset since in their
case, the procedures on the test and retest days were not

Fig. 4 MicroPET images of a single rat acquired during the a test and b retest scans. A dose of 59.9 and 41.8 MBq of
[11C]MPDX was injected on these two occasions. Images represent summed data of all dynamic frames. The position of several
brain regions and of the Harderian glands is indicated by arrows.

Table 1. Reliability of estimates of regional tracer distribution volume (VT)

Region Test Retest % relative difference TRV COV (%) test COV (%) retest ICC

Whole brain 1.11 ± 0.13 1.14 ± 0.14 2.28 ± 4.69 3.7 ± 3.2 11.5 12.0 0.96
Amygdala 0.90 ± 0.08 0.94 ± 0.09 4.58 ± 7.61 6.1 ± 5.4 8.4 9.2 0.79
Caudate putamen 1.29 ± 0.17 1.35 ± 0.22 3.76 ± 6.25 4.7 ± 4.9 13.1 16.2 0.95
Mesencephalic region 1.09 ± 0.10 1.13 ± 0.15 3.40 ± 8.63 6.9 ± 5.2 9.5 13.5 0.83
Pons 0.97 ± 0.07 1.00 ± 0.10 3.59 ± 8.46 7.1 ± 4.9 7.5 9.6 0.69
Medulla 0.90 ± 0.08 0.93 ± 0.09 3.21 ± 7.57 6.5 ± 3.9 8.5 9.4 0.79
Cerebellum 1.17 ± 0.14 1.18 ± 0.12 1.33 ± 4.12 2.8 ± 2.9 12.4 10.1 0.98
Olfactory bulb 0.66 ± 0.10 0.70 ± 0.14 7.06 ± 13.15 9.2 ± 9.3 14.5 19.6 0.84
Cortex 1.09 ± 0.14 1.10 ± 0.14 1.41 ± 4.69 3.0 ± 3.4 13.1 12.9 0.98
Hippocampus 1.26 ± 0.12 1.28 ± 0.13 2.13 ± 4.77 3.8 ± 3.1 9.8 9.9 0.94
Hypothalamus 0.94 ± 0.07 1.01 ± 0.12 7.82 ± 8.60 9.2 ± 5.3 8.0 11.5 0.69
Thalamus 1.41 ± 0.18 1.42 ± 0.17 0.60 ± 4.29 2.9 ± 2.8 12.8 11.9 0.98
Olfactory cortex 0.97 ± 0.11 1.06 ± 0.17 9.09 ± 12.37 10.3 ± 8.8 11.5 16.3 0.74
Brain remnants 1.21 ± 0.14 1.24 ± 0.16 2.88 ± 6.55 4.9 ± 4.4 11.8 12.6 0.93
Mean ± SD 3.80 ± 2.54 5.8 ± 2.5 10.9 ± 2.2 12.5 ± 3.1 0.86 ± 0.11

PET images were co-registered with a MRI template in order to identify regions-of-interest
TRV test-retest variability, COV coefficient of variation, ICC intraclass correlation coefficient
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identical. Data from an additional rat were also excluded
since that animal developed a breathing depression during
the retest scan.

Blood Sampling

The catheter in a superficial branch of the femoral artery
allowed rapid blood sampling: 0.1 ml of blood could be
drawn within 10 s. Time-activity curves of radioactivity in
arterial plasma during the test and retest scans are shown in
Fig. 3a. For the sake of clarity, the data are plotted on a
logarithmic X-axis. Both curves show a peak about 1 min
after the start of the infusion pump followed by a slow wash-
out as observed previously [18]. Plasma radioactivity at 0.83
and 1 min appears to be slightly greater in scan 2 than in
scan 1, but all other data points overlap and the two curves
are not statistically different. Sampling from the main
femoral artery or sampling from the superficial branch of
this artery during the retest scan produced identical results,
as expected.

PET Images

Representative images of adenosine A1 binding in the rat
brain during the test and retest scan are presented in Fig. 4.
The images show high tracer uptake in the hippocampus,
striatum, and cerebellum. Lower levels of radioactivity are
observed in other brain areas such as cerebral cortex and the
olfactory bulb. Similar images were acquired in previous
studies from our institution [7, 18, 19]. Visual differences
between scan 1 and scan 2 were not detected. Time-activity
curves for different brain regions show slightly higher results
in the retest scan but the differences are not significant
(Fig. 3b, c). Biodistribution SUV values (acquired after the
retest scan) are presented in the supplementary data. These

were comparable with previously reported values for
[11C]MPDX in our institution [18, 19].

Test-Retest Reproducibility

Injected tracer dose, specific radioactivity, and tracer purity
in the test and retest scans were not significantly different.
Data for regional VT (calculated by Logan graphical
analysis, using PET images fused with a MRI template)
are shown in Table 1. Statistically significant differences
between VT values acquired during test and retest were not
observed. The relative difference between scan 1 and scan 2
was G5 % in all brain regions, with exception of the
olfactory cortex, cortex, hypothalamus, and olfactory bulb
where values between 5 and 10 % were observed. The TRV
is for all brain regions G10 % with exception of the olfactory
cortex. The COV for VT showed an average for all brain
regions of 10.9 ± 2.2 % in scan 1 and 12.5 ±3.1 % in scan 2.
The reliability of the measurements between and within
subjects, expressed as ICC, indicated a substantial agreement
between test and retest, with average value of 0.86 ±0.11,
and almost a perfect agreement in most regions, with ICC
values greater than 0.9 [17].

We also examined the reproducibility of VT data
calculated after co-registration of the PET data with a
[11C]MPDX PET template (Table 2). The reliability of VT

estimations using this approach was quite similar to that of
estimations using a MRI template.

Factors Affecting the Reliability of VT Estimates

ICC data showed a significant positive correlation with
tracer distribution volume (VT-value) in the region-of-
interest (ROI), both in the test (r=0.83, p=0.001) and retest
(r=0.77, pG 0.005) scans (Fig. 5a, b). ROI volume (in cm3)
appeared to affect VT reliability as well. A ROI volume of

Table 2. Reliability of estimates of regional tracer distribution volume (VT)

Region Test Retest % relative difference TRV COV (%) test COV (%) retest ICC

Whole brain 1.11 ± 0.12 1.15 ± 0.14 2.99 ± 5.43 4.2 ± 3.9 11.0 12.0 0.94
Amygdala 0.84 ± 0.08 0.90 ± 0.10 6.60 ± 8.57 8.6 ± 4.9 9.0 11.3 0.74
Caudate putamen 1.29 ± 0.17 1.32 ± 0.20 2.43 ± 4.85 3.6 ± 3.6 13.1 15.4 0.97
Mesencephalic region 1.07 ± 0.10 1.10 ± 0.16 2.58 ± 7.88 6.0 ± 4.8 9.7 14.5 0.88
Pons 0.93 ± 0.07 0.97 ± 0.11 4.49 ± 8.29 7.3 ± 4.7 7.6 10.8 0.73
Medulla 0.88 ± 0.07 0.92 ± 0.10 5.24 ± 9.39 8.5 ± 5.0 8.3 10.8 0.65
Cerebellum 1.17 ± 0.11 1.22 ± 0.11 4.25 ± 6.28 4.6 ± 5.3 9.7 8.8 0.87
Olfactory bulb 0.66 ± 0.10 0.69 ± 0.13 4.00 ± 7.79 6.0 ± 5.3 15.1 19.3 0.93
Cortex 1.11 ± 0.14 1.13 ± 0.14 1.86 ± 4.59 3.2 ± 3.3 12.9 12.8 0.97
Hippocampus 1.23 ± 0.11 1.28 ± 0.14 3.85 ± 6.88 6.2 ± 3.9 9.1 10.7 0.86
Hypothalamus 0.89 ± 0.08 0.95 ± 0.13 6.76 ± 9.67 9.4 ± 5.1 8.6 13.2 0.71
Thalamus 1.39 ± 0.17 1.43 ± 0.18 2.67 ± 5.27 4.7 ± 2.9 12.0 12.5 0.95
Olfactory cortex 0.94 ± 0.11 1.02 ± 0.17 7.48 ± 10.44 8.6 ± 7.7 12.0 16.8 0.83
Brain remnants 1.20 ± 0.14 1.23 ± 0.15 2.81 ± 6.15 4.4 ± 4.3 11.7 12.1 0.94
Mean ± SD 4.14 ± 1.78 6.1 ± 2.1 10.7 ± 2.2 12.9 ± 2.8 0.85 ± 0.11

PET images were co-registered with an [11C]MPDX PET template in order to identify regions-of-interest
TRV test-retest variability, COV coefficient of variation, ICC intraclass correlation coefficient
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0.02 cm3 is at least needed to get a moderate agreement. ICC
is not affected with a ROI volume of 0.10 cm3 or higher
(Fig. 5c).

Model Fits vs Graphical Analysis

VT data obtained from Logan graphical analysis, a 1TCM fit,
or a 2TCM fit show a striking resemblance which is
demonstrated in Fig. 6. With slopes of 0.93 and 0.97 and
correlation coefficients of 0.99 and 1.00, the data were
almost identical (Fig. 6).

A recent publication suggested that the olfactory bulb
may be used as a reference region to estimate A1 adenosine
receptor (A1AR) availability in the rodent brain without any
need for arterial blood sampling [12]. Since our own data
indicated that olfactory bulb was indeed the brain region
showing the lowest uptake of [11C]MPDX, we tried a SRTM
fit for estimation of BPND from our [11C]MPDX data.
Although the relative differences between BPND estimated in
the test and retest scans were comparable to those observed
for VT, SD values were in all regions much higher. TRV
(17.2 ± 8.2) and COV for the test (23.6 ± 10.1) and retest
(17.7 ± 10.5) scan were higher compared to the values
observed for VT calculated by Logan graphical analysis.
The average ICC (0.41 ±0.26) for BPND indicated a fair
agreement, with only one brain region showing almost
perfect agreement [17]. An overview of quality parameters
for the SRTM fit is presented in the supplementary data [20].

Discussion
Rodents can be catheterized in different ways, for example,
by placement of cannulas in the aorta, a femoral artery, or a
carotid artery. Catheterization of a femoral artery is
frequently applied [4–6]. Catheterization of a superficial
branch of a femoral artery offers the same benefits but
makes repeated arterial blood sampling in a single rat
possible. In order to determine if such catheterization causes
significant adverse effects, we examined different aspects of
animal welfare such as weight loss, bleeding, visible
infections, and disturbances of movement. These observa-
tions indicated that the surgery had negligible adverse
effects. However, we did not examine physiological or
metabolic parameters of inflammation which could be
altered by our technique. Such parameters should be
explored in the future studies.

Catheterization of a superficial branch of a femoral artery
could be applied in longitudinal PET studies involving
maximally three quantitative scans with rapid blood sam-
pling. A catheter could be placed in a superficial artery in the
left and right hind limbs (for the first and second scan) and
in one of the large femoral arteries (for the last scan), after
which the rat would reach its humane end point.

A recent publication describes continuous measurements
of blood pressure and heart rate, using a permanent catheter
inserted in a femoral artery [21]. This approach could be
used if more than three PET scans with blood sampling are
required, but the impact of a permanent catheter on
neuroreceptor availability in the brain has to be explored.

Fig. 5 Correlation between tracer distribution volume in a
region-of-interest and the value of the ICC for a test and b
retest and the relationship between ROI volume (in cm3) and
the value of c ICC.
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Catheterization of a superficial branch of the femoral
artery requires the use of a catheter with a smaller diameter
than is normally used for arterial sampling (0.28 mm as
compared to 0.40 mm inner diameter). For this reason, we
initially questioned whether rapid blood sampling would be
possible with this technique. However, we noticed that blood
samples of normal size (0.1–0.15 ml) could be drawn within
a period of 10 s. Apparently, the pressure in the artery is
sufficient for rapid sampling through a catheter with a
narrow bore.

Tracer uptake, i.e., the density of adenosine A1AR in a
brain region of interest, appears to be an important factor
determining the reliability of VT estimates. Figure 5 indicates
a significant positive correlation between the intraclass
correlation coefficient and VT value in the range 0.9 to 1.5.
VT reproducibility appears to be affected also by ROI
volume if volumes are smaller than 0.10 cm3. Figure 5
indicates an excellent reproducibility for volumes greater
than this threshold, but at very small volumes, the reliability
of the measurements is impaired. The observed volume

threshold may be tracer- and camera-dependent. More
research in this area is needed.

The data reported in Fig. 6 indicate that VT can be reliably
estimated using either a 1TCM fit, a 2TCM fit, or Logan
graphical analysis. However, the use of graphical analysis
results in a slight (7 %) underestimation of VT as compared
with the use of a 2TCM fit. This difference is probably
related to well-known limitations of the Logan plot [22, 23].

We were not able to estimate BPND from a 2TCM fit,
since erratic and abnormal values were acquired in most of
the cases (an overview of quality parameters for the 2TCM
fit is presented in the supplementary data). This may be due
to the study design and the resulting shape of the cerebral
TACs. In a previous study where [11C]MPDX was injected
manually as a rapid bolus [7], it proved possible to estimate
BPND from a 2TCM fit. In the present study, we injected the
tracer as a slow bolus (1 ml/min), using an infusion pump.
This slow bolus improved the reproducibility of the plasma
time-activity curves but altered the kinetics of the tracer
within the brain. Because of these altered kinetics, the

Fig. 6 Correlation between aVT Logan and VT-2TCM and bVT-1TCM and VT-2TCM.

Table 3. Reliability of BPND calculated from a simplified reference tissue model (SRTM) fit, with the olfactory bulb as reference region

Region Test Retest % relative difference TRV COV (%) test COV (%) retest ICC

Whole brain 0.70 ± 0.11 0.66 ± 0.07 −2.79 ± 16.20 10.8 ± 14.2 15.8 10.7 0.34
Amygdala 0.39 ± 0.38 0.18 ± 0.13 9.02 ± 40.92 31.4 ± 24.1 45.6 33.7 0.44
Caudate putamen 0.96 ± 0.93 0.17 ± 0.06 −1.68 ± 11.35 8.1 ± 8.6 17.6 7.0 0.69
Mesencephalic region 0.68 ± 0.64 0.12 ± 0.09 −3.68 ± 18.41 15.1 ± 12.1 17.3 13.5 0.13
Pons 0.51 ± 0.48 0.12 ± 0.09 −1.78 ± 26.39 22.5 ± 13.0 23.5 18.0 0.02
Medulla 0.40 ± 0.38 0.14 ± 0.08 5.81 ± 48.42 34.1 ± 28.9 35.6 21.2 *
Cerebellum 0.77 ± 0.73 0.10 ± 0.14 −3.72 ± 20.25 16.5 ± 14.5 12.8 19.2 0.34
Cortex 0.65 ± 0.61 0.11 ± 0.07 −4.39 ± 16.38 13.0 ± 12.9 16.3 11.4 0.24
Hippocampus 0.93 ± 0.90 0.18 ± 0.09 −1.46 ± 18.79 13.5 ± 14.8 19.5 10.3 0.24
Hypothalamus 0.45 ± 0.49 0.17 ± 0.19 13.17 ± 31.95 22.4 ± 16.7 37.0 38.8 0.73
Thalamus 1.14 ± 1.08 0.25 ± 0.09 −2.67 ± 19.54 14.4 ± 16.3 21.8 8.5 0.33
Olfactory cortex 0.48 ± 0.52 0.14 ± 0.16 10.10 ± 15.42 13.4 ± 8.7 28.5 29.8 0.93
Brain remnants 0.84 ± 0.81 0.12 ± 0.06 −1.82 ± 12.07 8.1 ± 9.6 14.9 7.8 0.51
Mean ± SD 1.09 ± 6.11 17.2 ± 8.2 23.6 ± 10.1 17.7 ± 10.5 0.41 ± 0.26

PET images were co-registered with a MRI template in order to identify regions-of-interest
TRV test-retest variability, COV coefficient of variation, ICC intraclass correlation coefficient
*ICC calculation gave an incorrect solution. N = 5
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2TCM fit may have provided a model solution which was
neither optimal nor unique.

The data reported in Table 3 indicate a poor reproduc-
ibility of BPND values for [11C]MPDX calculated from a
SRTM fit with olfactory bulb as the reference region. The
use of olfactory bulb as a reference appears to also result in
an underestimation of whole brain BPND of more than 50 %
when the current values are compared with previously
published arterial-input pharmacokinetic modeling data [7,
12]. Both this poor reproducibility and the underestimation
may be due to the fact that the olfactory bulb is not a good
reference region for [11C]MPDX. In blocking experiments
which involved the specific A1AR antagonist DPCPX,
[11C]MPDX uptake (SUV) in the olfactory bulb was
significantly reduced from 0.64 ± 0.18 to 0.34 ± 0.07 [7].
Thus, about 47 % of the bulbar [11C]MPDX uptake appears
to represent specific binding to A1AR.

Conclusion
Repeated rapid arterial blood sampling is possible with our
new surgical procedure. This allows longitudinal studies in
rats involving repeated quantitative PET imaging with a high
test-retest reproducibility.
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