88 research outputs found
Systolic and diastolic ventricular function in zebrafish embryos: Influence of norepenephrine, MS-222 and temperature
<p>Abstract</p> <p>Background</p> <p>Zebrafish are increasingly used to study the influences of gene mutation and manipulation on cardiac development, structure and function. In this study, a video edge detection system was used to characterise, continuously, cardiac ventricle function in 2â5 days old zebrafish embryos embedded in 0.6% agar and examined under light microscopy at room temperature (22°C). Using video edge detection software (IonOptix Inc), the motion of a small region of the cardiac ventricle wall was converted to a continuous chart trace allowing analysis of wall motion amplitude (WMA) and myocardial wall velocity during systole (MWVs) and diastole (MWVd).</p> <p>Results</p> <p>Cardiac wall motion characteristics changed progressively from day 2 to 5 (WMA, 2-days, 17.6 ± 4.4 ÎŒm vs 5-days, 24.6 ± 4.7 ÎŒm, p < 0.01). MWVd was more rapid than MWVs at all developmental time points. Embryonic hearts were also assessed after increasing concentrations of norepenephrine (NE) and the anaesthetic agent MS222 (tricaine) were added to the bathing water. In response to NE, WMA increased significantly more in 4 day embryos compared with 2 day embryos (change in WMA,13.6 ± 8.2 ÎŒm vs 4.0 ± 8.8 ÎŒm, p = 0.01, respectively) while the decrease in WMA in response to MS222 was similar in both 2 and 4-day embryos. Heart rate, MWVs and MWVd were significantly higher at 28°C compared with 22°C. No differences in cardiac function were observed between AB and Golden strains.</p> <p>Conclusion</p> <p>Video edge detection appears sufficiently sensitive to detect subtle changes in diastolic and systolic cardiac function during development and changes resulting from pharmacological and environmental interventions. Such measurements could be valuable in assessment of altered cardiac function after genetic manipulation.</p
Imaging the Developing Heart: Synchronized Timelapse Microscopy During Developmental Changes
How do you use imaging to analyse the development of the heart, which not
only changes shape but also undergoes constant, high-speed, quasi-periodic
changes? We have integrated ideas from prospective and retrospective optical
gating to capture long-term, phase-locked developmental time-lapse videos. In
this paper we demonstrate the success of this approach over a key developmental
time period: heart looping, where large changes in heart shape prevent previous
prospective gating approaches from capturing phase-locked videos. We use the
comparison with other approaches to in vivo heart imaging to highlight the
importance of collecting the most appropriate data for the biological question.Comment: Carl J. Nelson and Charlotte Buckley and John J. Mullins and Martin
A. Denvir and Jonathan Taylor, "Imaging the Developing Heart: Synchronized
Timelapse Microscopy During Developmental Changes", Proc. SPIE (10499),
10499-41 (2018). Copyright 2018 Society of Photo Optical Instrumentation
Engineers (SPIE
Identifying Acute Coronary Syndrome Patients Approaching End-of-Life
Background: Acute coronary syndrome (ACS) is common in patients approaching the end-of-life (EoL), but these patients rarely receive palliative care. We compared the utility of a palliative care prognostic tool (Gold Standards Framework (GSF)) and the Global Registry of Acute Coronary Events (GRACE) score, to help identify patients approaching EoL. Methods and Findings: 172 unselected consecutive patients with confirmed ACS admitted over an eight-week period were assessed using prognostic tools and followed up for 12 months. GSF criteria identified 40 (23%) patients suitable for EoL care while GRACE identified 32 (19%) patients with $10 % risk of death within 6 months. Patients meeting GSF criteria were older (p = 0.006), had more comorbidities (1.660.7 vs. 1.260.9, p = 0.007), more frequent hospitalisations before (p = 0.001) and after (0.0001) their index admission, and were more likely to die during follow-up (GSF+ 20 % vs GSF- 7%, p = 0.03). GRACE score was predictive of 12-month mortality (C-statistic 0.75) and this was improved by the addition of previous hospital admissions and previous history of stroke (C-statistic 0.88). Conclusions: This study has highlighted a potentially large number of ACS patients eligible for EoL care. GSF or GRACE could be used in the hospital setting to help identify these patients. GSF identifies ACS patients with more comorbidity and at increased risk of hospital readmission
FLI1+ cells transcriptional analysis reveals LMO2-PRDM16 axis in angiogenesis
A network of molecular factors drives the development, differentiation, and maintenance of endothelial cells. Friend leukemia integration 1 transcription factor (FLI1) is a bona fide marker of endothelial cells during early development. In zebrafish Tg(fli1:EGFP)(y1), we identified two endothelial cell populations, high-fli1(+) and low-fli1(+), by the intensity of green fluorescent protein signal. By comparing RNA-sequencing analysis of non-fli1 expressing cells (fli1(â)) with these two (fli1(+)) cell populations, we identified several up-regulated genes, not previously recognized as important, during endothelial development. Compared with fli1(â) and low-fli1(+) cells, high-fli1(+) cells showed up-regulated expression of the zinc finger transcription factor PRDI-BF1 and RIZ homology domain containing 16 (prdm16). Prdm16 knockdown (KD) by morpholino in the zebrafish larva was associated with impaired angiogenesis and increased number of low-fli1(+) cells at the expense of high-fli1(+) cells. In addition, PRDM16 KD in endothelial cells derived from human-induced pluripotent stem cells impaired their differentiation and migration in vitro. Moreover, zebrafish mutants (mut) with loss of function for the oncogene LIM domain only 2 (lmo2) also showed reduced prdm16 gene expression combined with impaired angiogenesis. Prdm16 expression was reduced further in endothelial (CD31(+)) cells compared with CD31(â) cells isolated from lmo2-mutants (lmo2-mut) embryos. Chromatin immunoprecipitationâPCR demonstrated that Lmo2 binds to the promoter and directly regulates the transcription of prdm16. This work unveils a mechanism by which prdm16 expression is activated in endothelial cells by Lmo2 and highlights a possible therapeutic pathway by which to modulate endothelial cell growth and repair
Palliative care needs in patients hospitalized with heart failure (PCHF) study: rationale and design
Abstract Aims The primary aim of this study is to provide data to inform the design of a randomized controlled clinical trial (RCT) of a palliative care (PC) intervention in heart failure (HF). We will identify an appropriate study population with a high prevalence of PC needs defined using quantifiable measures. We will also identify which components a specific and targeted PC intervention in HF should include and attempt to define the most relevant trial outcomes. Methods An unselected, prospective, near-consecutive, cohort of patients admitted to hospital with acute decompensated HF will be enrolled over a 2-year period. All potential participants will be screened using B-type natriuretic peptide and echocardiography, and all those enrolled will be extensively characterized in terms of their HF status, comorbidity, and PC needs. Quantitative assessment of PC needs will include evaluation of general and disease-specific quality of life, mood, symptom burden, caregiver burden, and end of life care. Inpatient assessments will be performed and after discharge outpatient assessments will be carried out every 4âmonths for up to 2.5âyears. Participants will be followed up for a minimum of 1âyear for hospital admissions, and place and cause of death. Methods for identifying patients with HF with PC needs will be evaluated, and estimates of healthcare utilisation performed. Conclusion By assessing the prevalence of these needs, describing how these needs change over time, and evaluating how best PC needs can be identified, we will provide the foundation for designing an RCT of a PC intervention in HF
Isolated left ventricular non-compaction as an unusual cause of heart failure: a case report
<p>Abstract</p> <p>Introduction</p> <p>Isolated left ventricular non-compaction is a recently described form of cardiomyopathy that is associated with a significant risk of life-threatening arrhythmia and thromboembolic complications.</p> <p>Case presentation</p> <p>We report the presentation, diagnosis and management of isolated left ventricular non-compaction in a 54-year-old Caucasian woman presenting with progressive symptoms of heart failure.</p> <p>Conclusion</p> <p>Advances in diagnostic imaging have undoubtedly led to an increase in the detection of isolated left ventricular non-compaction. Diagnosing and differentiating this uncommon condition from other forms of cardiomyopathy are important as treatment and prognosis may differ significantly. Our current understanding of isolated left ventricular non-compaction, including diagnostic criteria, management and prognosis, is discussed.</p
Live imaging of the immune response to heart injury in larval zebrafish reveals a multi-stage model of neutrophil and macrophage migration
Neutrophils and macrophages are crucial effectors and modulators of repair and regeneration following myocardial infarction, but they cannot be easily observed in vivo in mammalian models. Hence many studies have utilized larval zebrafish injury models to examine neutrophils and macrophages in their tissue of interest. However, to date the migratory patterns and ontogeny of these recruited cells is unknown. In this study, we address this need by comparing our larval zebrafish model of cardiac injury to the archetypal tail fin injury model. Our in vivo imaging allowed comprehensive mapping of neutrophil and macrophage migration from primary hematopoietic sites, to the wound. Early following injury there is an acute phase of neutrophil recruitment that is followed by sustained macrophage recruitment. Both cell types are initially recruited locally and subsequently from distal sites, primarily the caudal hematopoietic tissue (CHT). Once liberated from the CHT, some neutrophils and macrophages enter circulation, but most use abluminal vascular endothelium to crawl through the larva. In both injury models the innate immune response resolves by reverse migration, with very little apoptosis or efferocytosis of neutrophils. Furthermore, our in vivo imaging led to the finding of a novel wound responsive mpeg1+ neutrophil subset, highlighting previously unrecognized heterogeneity in neutrophils. Our study provides a detailed analysis of the modes of immune cell migration in larval zebrafish, paving the way for future studies examining tissue injury and inflammation
- âŠ