5 research outputs found

    GNAQ/GNA11 Mosaicism Causes Aberrant Calcium Signaling Susceptible to Targeted Therapeutics

    Get PDF
    Mosaic variants in genes GNAQ or GNA11 lead to a spectrum of vascular and pigmentary diseases including Sturge-Weber syndrome, in which progressive postnatal neurological deterioration led us to seek biologically targeted therapeutics. Using two cellular models, we find that disease-causing GNAQ/11 variants hyperactivate constitutive and G-protein coupled receptor ligand–induced intracellular calcium signaling in endothelial cells. We go on to show that the aberrant ligand-activated intracellular calcium signal is fueled by extracellular calcium influx through calcium-release-activated channels. Treatment with targeted small interfering RNAs designed to silence the variant allele preferentially corrects both the constitutive and ligand-activated calcium signaling, whereas treatment with a calcium-release-activated channel inhibitor rescues the ligand-activated signal. This work identifies hyperactivated calcium signaling as the primary biological abnormality in GNAQ/11 mosaicism and paves the way for clinical trials with genetic or small molecule therapies

    Mosaic BRAF fusions are a recurrent cause of congenital melanocytic naevi targetable by MEK inhibition

    Get PDF
    Among children with multiple congenital melanocytic naevi (CMN), 25% have no established genetic cause, of which many develop a hyperproliferative and severely pruritic phenotype resistant to treatment. Gene fusions have been reported in individual cases of CMN. Here, we study 169 CMN patients, 38 of whom were double wild-type for NRAS/BRAF mutations. Nineteen of these 38 patients had sufficient tissue to undergo RNAseq, which revealed mosaic BRAF fusions in 11/19 patients and mosaic RAF1 fusions in 1/19. Recurrently, fusions involved the loss of the 5’ regulatory domain of BRAF or RAF1 but preserved the kinase domain. We validated all cases and detected the fusions in two separate naevi in 5/12 patients, confirming clonality. The absence of the fusion in blood in 8/12 patients indicated mosaicism. Primary culture of BRAF-fusion naevus cells from 3/12 patients demonstrated highly increased MAPK activation, despite only mildly increased BRAF expression, suggesting additional mechanisms of kinase activation. Trametinib quenched MAPK hyperactivation in vitro and treatment of two patients caused rapid improvement in bulk tissue, improving bodily movement, and reducing inflammation and severe pruritus. These findings offer a genetic diagnosis to an additional group of patients and trametinib as a treatment option for the severe associated phenotypes

    PTPN11 mosaicism causes a spectrum of pigmentary and vascular neurocutaneous disorders and predisposes to melanoma

    Get PDF
    Phakomatosis pigmentovascularis (PPV) is a diagnosis which denotes the coexistence of pigmentary and vascular birthmarks of specific types, accompanied by variable multisystem involvement including central nervous system disease, asymmetrical growth and a predisposition to malignancy. Using a tightly phenotyped group and high depth next generation sequencing of affected tissues we discover here clonal mosaic variants in gene PTPN11 encoding SHP2 phosphatase as a cause of PPV type III or spilorosea. Within an individual the same variant is found in distinct pigmentary and vascular birthmarks and is undetectable in blood. We go on to demonstrate that the same variants can cause either the specific pigmentary or vascular phenotypes alone, as well as driving melanoma development within the pigmentary lesion. Protein conformational modelling highlights that while variants lead to loss of function at the level of the phosphatase domain, resultant conformational changes promote longer ligand binding. In vitro modelling of the missense variants confirms downstream MAPK pathway overactivation, and widespread disruption of human endothelial cell angiogenesis. Importantly, PTPN11-mosaic patients theoretically risk passing on the variant to their children as the germline RASopathy Noonan syndrome with lentigines. These findings improve our understanding of the pathogenesis and biology of naevus spilus and capillary malformation syndromes, paving the way for better clinical management

    Mosaic BRAF fusions are a recurrent cause of congenital melanocytic naevi targetable by MEK pathway inhibition.

    No full text
    Among children with multiple congenital melanocytic naevi (CMN), 25% have no established genetic cause, of which many develop a hyperproliferative and severely pruritic phenotype resistant to treatment. Gene fusions have been reported in individual cases of CMN. Here, we study 169 CMN patients, 38 of whom were double wild-type for NRAS/BRAF mutations. Nineteen of these 38 patients had sufficient tissue to undergo RNAseq, which revealed mosaic BRAF fusions in 11/19 patients and mosaic RAF1 fusions in 1/19. Recurrently, fusions involved the loss of the 5' regulatory domain of BRAF or RAF1 but preserved the kinase domain. We validated all cases and detected the fusions in two separate naevi in 5/12 patients, confirming clonality. The absence of the fusion in blood in 8/12 patients indicated mosaicism. Primary culture of BRAF-fusion naevus cells from 3/12 patients demonstrated highly increased MAPK activation, despite only mildly increased BRAF expression, suggesting additional mechanisms of kinase activation. Trametinib quenched MAPK hyperactivation in vitro and treatment of two patients caused rapid improvement in bulk tissue, improving bodily movement, and reducing inflammation and severe pruritus. These findings offer a genetic diagnosis to an additional group of patients and trametinib as a treatment option for the severe associated phenotypes
    corecore