9,299 research outputs found
OCEANIC FLUXES FROM PROGLACIAL AND DEGLACIAL WATERSHEDS IN WESTERN GREENLAND
Weathering in western Greenland occurs in two distinct environments: proglacial watersheds that extend from the margin of the Greenland Ice Sheet (GIS) and derive water from ice melt, and deglacial watersheds that develop on terrains unconnected to the GIS and derive water from annual precipitation. Proglacial and deglacial watersheds currently provide equal amounts of runoff in western Greenland. These watersheds may contribute different solute fluxes to the oceans depending on exposure age, climate, and weathering environment. We test this hypothesis by comparing chemical compositions of streams in four deglacial watersheds (Sisimiut, Nerumaq, Qorlortoq, Kangerlussuaq) and one proglacial watershed (Watson River Akuliarusiarsuup Kuua River; AKR) along a ~160 km transect from the coast to the GIS.
Recent work found that weathering reactions in the deglacial watersheds shift from being dominated by carbonate dissolution inland to sulfide oxidation near the coast. Silicate weathering, based on increased Si, Na and K concentrations, is a minor source of solutes to deglacial streams and is less extensive near the GIS than the coast, where older moraines experience greater precipitation. In general, specific conductivity (SpC: 48-301 μS/cm) and pH (7.0-8.2) increase inland as precipitation decreases and fresh mineral surfaces become more common. The AKR, in contrast, has lower average SpC (11.9 uS/cm) and pH (6.86) than the deglacial streams. Low SpC reflects dilution by ice melt and short residence time of water in the subglacial system. Proglacial flow is enriched in Si compared to deglacial flow particularly near headwaters, indicating higher silicate weathering rates in the pro- and sub-glacial systems. Low pH values indicate: 1) equilibration with atmospheric CO2 in the supraglacial system near headwaters, and 2) acid production generated by sulfide oxidation in the hyporheic zone identified by elevated SO4 concentrations. However, Ca, Mg and HCO3 are the dominant ions over the length of the AKR indicating that dissolution of carbonate is the predominant form of weathering. Our results indicate the two types of watersheds provide distinct fluxes of solutes to the oceans that are likely to change as ice sheets retreat and advance with changing climate
Hydrologic exchange and chemical weathering in a proglacial watershed near Kangerlussuaq, west Greenland
The exchange of proglacial river water with active layer pore water could alter water chemical compositions in glacial outwash plains and oceanic solute fluxes. To evaluate effects of this exchange, we sampled Watson River and adjacent pore water during the 2013 melt season at two sandurs in western Greenland; one in Sandflugtdalen and the other near the confluence with Søndre Strømfjord. We measured temperature, specific conductivity, and head gradients between the river and bank over a week-long period at Sandflugtdalen, as well as sediment hydraulic conductivity and chemical compositions of waters from both sites. Specific conductivity of pore water is four to ten times greater than river water as solutes are concentrated from weathering reactions, cryoconcentration, and evaporation. Pore water compositions are predominantly altered by carbonate dissolution and sulfide mineral oxidation. High concentrations of HCO3 and SO4 result from solute recycling and dissolution of secondary Ca-Mg carbonate/sulfate salts initially formed by near-surface evaporation in the summer and at depth by freeze-in of the active layer and cryoconcentration in the winter. High hydraulic conductivity (10−5 to 10−4 m/s) and diurnal fluctuations of river stage during our study caused exchange of river and pore water immediately adjacent to the river channel, with a net loss of river water to the bank. Pore water \u3e6 m from the river continuously flowed away from the river. Approximately 1–8% of the river discharge through the Sandflugtdalen was lost to the river bank during our 6.75 day study based on calculations using Darcy’s Law. Although not sampled, some of this water should discharge to the river during low river stage early and late in the melt season. Elevated pore water solute concentrations in sandurs and water exchange at diurnal and seasonal frequency should impact fluxes of solutes to the ocean, although understanding the magnitude of this effect will require long-term evaluation throughout the melt season
Physics Of Eclipsing Binaries. II. Towards the Increased Model Fidelity
The precision of photometric and spectroscopic observations has been
systematically improved in the last decade, mostly thanks to space-borne
photometric missions and ground-based spectrographs dedicated to finding
exoplanets. The field of eclipsing binary stars strongly benefited from this
development. Eclipsing binaries serve as critical tools for determining
fundamental stellar properties (masses, radii, temperatures and luminosities),
yet the models are not capable of reproducing observed data well either because
of the missing physics or because of insufficient precision. This led to a
predicament where radiative and dynamical effects, insofar buried in noise,
started showing up routinely in the data, but were not accounted for in the
models. PHOEBE (PHysics Of Eclipsing BinariEs; http://phoebe-project.org) is an
open source modeling code for computing theoretical light and radial velocity
curves that addresses both problems by incorporating missing physics and by
increasing the computational fidelity. In particular, we discuss triangulation
as a superior surface discretization algorithm, meshing of rotating single
stars, light time travel effect, advanced phase computation, volume
conservation in eccentric orbits, and improved computation of local intensity
across the stellar surfaces that includes photon-weighted mode, enhanced limb
darkening treatment, better reflection treatment and Doppler boosting. Here we
present the concepts on which PHOEBE is built on and proofs of concept that
demonstrate the increased model fidelity.Comment: 60 pages, 15 figures, published in ApJS; accompanied by the release
of PHOEBE 2.0 on http://phoebe-project.or
Gb/s visible light communications with colloidal quantum dot color converters
This paper reports the utilization of colloidal semiconductor
quantum dots as color converters for Gb/s visible light
communications. We briefly review the design and properties of
colloidal quantum dots and discuss them in the context of fast
color conversion of InGaN light sources, in particular in view of
the effects of self-absorption. This is followed by a description of
a CQD/polymer composite format of color converters. We show
samples of such color-converting composite emitting at green, yellow/orange
and red wavelengths, and combine these with a blueemitting
microsize LED to form hybrid sources for wireless visible
light communication links. In this way data rates up to 1 Gb/s over
distances of a few tens of centimeters have been demonstrated. Finally,
we broaden the discussion by considering the possibility for
wavelength division multiplexing as well as the use of alternative
colloidal semiconductor nanocrystals
SEASONAL EVOLUTION AND SPATIAL DISTRIBUTION OF WEATHERING IN WESTERN GREENLAND
Through physical weathering, the Greenland Ice Sheet (GIS) produces sediments which are subsequently chemically weathered in three types of watersheds: 1) deglacial watersheds that are physically disconnected from the GIS and drain local precipitation, 2) proglacial watersheds that are hydrologically connected to the GIS, and 3) subglacial watersheds that form beneath the GIS. Chemical weathering in the glacial foreland may be important to atmospheric CO2 drawdown and oceanic fluxes of solutes, yet no holistic study exists that compares solute sources across all types of watersheds and through the melt season. Consequently, we investigated spatiotemporal changes in weathering through the 2013 ablation season from a transect of watersheds spanning the coast to the GIS in western Greenland. We sampled one proglacial (PG) watershed, from which we also assess subglacial (SG) weathering, one inland deglacial (IDG) and one coastal deglacial (CDG) watershed. A simple stoichiometric mass balance quantifies solute sources in each watershed. The principal solute source is trace carbonates in all watersheds; however, IDG has more carbonate (61 vs 36 mol%) and less silicate (3 vs 14 mol%) weathering than CDG. PG has similar carbonate (41 mol%) and silicate weathering (16 mol%) proportions to CDG, despite proximity to IDG. Weathering of biotite decreases from 12 mol% at PG to 3 mol% at CDG along an exposure age gradient, consistent with more radiogenic 87Sr/86Sr in waters at PG (0.73556) than DGC (0.71114). Carbonate weathering decreases and biotite + silicate weathering increases downstream through PG, reflecting increased weathering. Solute sources change little through time or space at IDG, but at PG, silicate weathering increases and carbonate weathering decreases as flow increases through the melt season, consistent with increased contributions of SG waters with long residence times in distributed channels. Thus, the evolution of SG through time and connections between subglacial reservoirs and main flow paths plays an important role in weathering at PG. As the GIS retreats, deglacial watersheds will constitute a greater fraction of the weathering flux and thus increased silicate weathering should alter solute fluxes to the oceans and increase atmospheric CO2 drawdown
Exposure age and climate controls on weathering in deglaciated watersheds of western Greenland
Fine-grained sediments deposited by retreating glaciers weather faster than the global average and this weathering can impact the global carbon cycle and oceanic fluxes of nutrients and radiogenic isotopes. Much work has focused on subglacial and proglacial weathering of continental ice sheets, but little is known about weathering and resulting fluxes from deglacial watersheds, which are disconnected from the ice sheets and discharge only annual precipitation and permafrost melt. We investigate the effects of exposure age and precipitation on weathering intensity in four deglacial watersheds on Greenland that form a transect from the coast near Sisimiut toward the Greenland Ice Sheet (GrIS) near Kangerlussuaq based on evaluations of major ion compositions, Sr isotope ratios, and mineral saturation states of waters and sediments. The transect is underlain by Archean orthogneiss and is characterized by gradients in moraine ages (∼7.5–8.0 ky inland to ∼10 ky at the coast) and water balance (−150 mm/yr inland to +150 mm/yr at the coast). Anion compositions are generally dominated by HCO3, but SO4 becomes increasingly important toward the coast, reflecting a switch from trace carbonate dissolution to sulfide mineral oxidation. Coastal watersheds have a higher proportion of dissolved silica, higher Na/Cl, Si/Ca, and lower Ca/Sr ratios than inland watersheds, indicating an increase in the relative proportion of silicate weathering and an increase in the extent of weathering toward the coast. More extensive weathering near the coast is also apparent in differences in the 87Sr/86Sr ratios of stream water and bedload (Δ87Sr/86Sr), which decreases from 0.017 inland to 0.005 at the coast, and in increased saturation states relative to amorphous SiO2 and quartz. The steep weathering gradient from inland to coastal watersheds reflects enhanced weathering compared to that expected from the 2 to 3 ky difference in exposure age caused by elevated coastal precipitation. The gradient of weathering with exposure age, water budget and distance from the ice sheet indicates that oceanic and atmospheric fluxes will change as continental glaciers retreat, precipitation patterns across the deglacial region readjust, and the relative proportion of deglacial to proglacial runoff increases
Active-matrix GaN micro light-emitting diode display with unprecedented brightness
Displays based on microsized gallium nitride light-emitting diodes possess extraordinary brightness. It is demonstrated here both theoretically and experimentally that the layout of the n-contact in these devices is important for the best device performance. We highlight, in particular, the significance of a nonthermal increase of differential resistance upon multipixel operation. These findings underpin the realization of a blue microdisplay with a luminance of 10⁶ cd/m²
Novel Biomarkers of Physical Activity Maintenance in Midlife Women: Preliminary Investigation
The precision health initiative is leading the discovery of novel biomarkers as important indicators of biological processes or responses to behavior, such as physical activity. Neural biomarkers identified by magnetic resonance imaging (MRI) hold promise to inform future research, and ultimately, for transfer to the clinical setting to optimize health outcomes. This study investigated resting-state and functional brain biomarkers between midlife women who were maintaining physical activity in accordance with the current national guidelines and previously acquired age-matched sedentary controls. Approval was obtained from the Human Subjects Committee. Participants included nondiabetic, healthy weight to overweight (body mass index 19–29.9 kg/m2) women (n = 12) aged 40–64 years. Control group data were used from participants enrolled in our previous functional MRI study and baseline resting-state MRI data from a subset of sedentary (week) midlife women who were enrolled in a 9-month exercise intervention conducted in our imaging center. Differential activation of the inferior frontal gyrus (IFG) and greater connectivity with the dorsolateral prefrontal cortex (dlPFC) was identified between physically active women and sedentary controls. After correcting for multiple comparisons, these differences in biomarkers of physical activity maintenance did not reach statistical significance. Preliminary evidence in this small sample suggests that neural biomarkers of physical activity maintenance involve activations in the brain region associated with areas involved in implementing goal-directed behavior. Specifically, activation of the IFG and connectivity with the dlPFC is identified as a neural biomarker to explain and predict long-term physical activity maintenance for healthy aging. Future studies should evaluate these biomarker links with relevant clinical correlations
- …