6 research outputs found

    Inversion charge study in TMO hole-selective contact-based solar cells

    Get PDF
    © 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.In this article, we study the effect of the inversion charge ( Q inv ) in a solar cell based on the hole-selective characteristic of substoichiometric molybdenum oxide (MoO x ) and vanadium oxide (VO x ) deposited directly on n-type silicon. We measure the capacitance–voltage ( C – V ) curves of the solar cells at different frequencies and explain the results taking into account the variation of the space charge and the existence of Q inv in the c-Si inverted region. The high-frequency capacitance measurements follow the Schottky metal–semiconductor theory, pointing to a low inversion charge influence in these measurements. However, for frequencies lower than 20 kHz, an increase in the capacitance is observed, which we relate to the contribution of the inversion charge. In addition, applying the metal–semiconductor theory to the high-frequency measurements, we have obtained the built-in voltage potential and show new evidence about the nature of the conduction process in this structure. This article provides a better understanding of the transition metal oxide/n-type crystalline silicon heterocontact.The authors would like to acknowledge the CAI de Técnicas Físicas of the Universidad Complutense de Madrid. The authors would also like to thank the Mexican grants program CONACyT for its financial collaboration.Peer ReviewedPostprint (author's final draft

    Transport mechanisms in silicon heterojunction solar cells with molybdenum oxide as a hole transport layer

    No full text
    © . This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/Heterojunction solar cells based on molybdenum sub-oxide (MoOx) deposited on n-type crystalline silicon have been fabricated. The hole selective character of MoOx is explained by its high workfunction, which causes a strong band bending in the Si substrate. This bending pushes the surface into inversion. In addition, the sub-stoichiometry of the evaporated MoOx layers leads to a high density of states within the bandgap. This is crucial for charge transport. The J-V electrical characteristics at several temperatures were analysed to elucidate the dominant charge transport mechanisms of this heterojunction structure. We have identified two different transport mechanisms. At low bias voltage, transport is dominated by hole tunnelling through the MoOx gap states. At higher voltage the behaviour is similar to a Schottky junction with a high barrier value, due to the high MoOx work function. These results provide a better understanding of the hole selective character of MoOx/n-type silicon heterocontacts, which is key to further improve this new kind of solar cells.Peer Reviewe

    Electronic transport properties of Ti-supersaturated Si processed by rapid thermal annealing or pulsed-laser melting

    No full text
    Se deposita la versión posprint del artículoIn the scope of supersaturated semiconductors for infrared detectors, we implanted Si samples with Ti at high doses and processed them by rapid thermal annealing (RTA) to recover the crystal quality. Also, for comparative purposes, some samples were processed by pulsed-laser melting. We measured the electronic transport properties at variable temperatures and analyzed the results. The results indicate that, for RTA samples, surface layers with a high Ti concentration have negligible conductivity due to defects. In contrast, the implantation tail region has measurable conductivity due to very high electron mobility. This region shows the activation of a very shallow donor and a deep donor level. While deep levels have been previously reported for Ti in Si, such a shallow level has never been measured, and we suggest that it originates from Ti-Si complexes. Finally, a decoupling effect between the implanted layer and the substrate seems to be present, and a bilayer model is applied to fit the measured properties. The fitted parameters follow the Meyer–Neldel rule. The role of the implantation tails in Si supersaturated with Ti is revealed in this work.Comunidad de MadridERDF Funds - MICINNEuropean Social Fund (ESF)Ministerio de Ciencia e Innovación (España)Mexican grants program CONACyTMinistry of Education in the Kingdom of Saudi ArabiaDepto. de Estructura de la Materia, Física Térmica y ElectrónicaFac. de Ciencias FísicasTRUEpu

    Sub-Bandgap external quantum efficiency in Ti implanted Si heterojunction with intrinsic thin layer cells

    No full text
    In this work we present the manufacturing processes and results obtained from the characterization of heterojunction with intrinsic thin layer solar cells that include a heavily Ti ion implanted Si absorbing layer. The cells exhibit external circuit photocurrent at photon energies well below the Si bandgap. We discuss the origin of this below-bandgap photocurrent and the modifications in the hydrogenated amorphous intrinsic Si layer thickness to increase the open-circuit voltage.Peer ReviewedPostprint (published version

    Transport mechanisms in hyperdoped silicon solar cells

    No full text
    According to intermediate band (IB) theory, it is possible to increase the efficiency of a solar cell by boosting its ability to absorb low-energy photons. In this study, we used a hyperdoped semiconductor approach for this theory to create a proof of concept of different silicon-based IB solar cells. Preliminary results show an increase in the external quantum efficiency (EQE) in the silicon sub-bandgap region. This result points to sub-bandgap absorption in silicon having not only a direct application in solar cells but also in other areas such as infrared photodetectors. To establish the transport mechanisms in the hyperdoped semiconductors within a solar cell, we measured the J–V characteristic at different temperatures. We carried out the measurements in both dark and illuminated conditions. To explain the behavior of the measurements, we proposed a new model with three elements for the IB solar cell. This model is similar to the classic two-diodes solar cell model but it is necessary to include a new limiting current element in series with one of the diodes. The proposed model is also compatible with an impurity band formation within silicon bandgap. At high temperatures, the distance between the IB and the n-type amorphous silicon conduction band is close enough and both bands are contacted. As the temperature decreases, the distance between the bands increases and therefore this process becomes more limiting.The authors would like to thank the Physical Sciences Research Assistance Centre (CAI de Técnicas Físicas) of the Complutense University of Madrid. This study was partially funded by Project MADRID-PV2 (P2018/EMT-4308), with aid from the Regional Government of Madrid and the ERDF, by the Spanish Ministry of Science and Innovation/National Research Agency (MCIN/AEI) under grants TEC2017- 84378-R, PID2019-109215RB-C41, PID2020-116508RB-I00 and PID2020- 117498RB-I00. Daniel Caudevilla would like to express his thanks for grant PRE2018-083798, provided by the MICINN and the European Social Fund. Francisco Pérez Zenteno would also like to express his thanks for grant 984933, provided by CONACyT (Mexico).Peer ReviewedPostprint (author's final draft

    Sub-Bandgap external quantum efficiency in Ti implanted Si heterojunction with intrinsic thin layer cells

    No full text
    In this work we present the manufacturing processes and results obtained from the characterization of heterojunction with intrinsic thin layer solar cells that include a heavily Ti ion implanted Si absorbing layer. The cells exhibit external circuit photocurrent at photon energies well below the Si bandgap. We discuss the origin of this below-bandgap photocurrent and the modifications in the hydrogenated amorphous intrinsic Si layer thickness to increase the open-circuit voltage.Peer Reviewe
    corecore