16 research outputs found

    Rich Club Organization of Macaque Cerebral Cortex and Its Role in Network Communication

    Get PDF
    <div><p>Graph-theoretical analysis of brain connectivity data has revealed significant features of brain network organization across a range of species. Consistently, large-scale anatomical networks exhibit highly nonrandom attributes including an efficient small world modular architecture, with distinct network communities that are interlinked by hub regions. The functional importance of hubs motivates a closer examination of their mutual interconnections, specifically to examine the hypothesis that hub regions are more densely linked than expected based on their degree alone, i.e. forming a central rich club. Extending recent findings of rich club topology in the cat and human brain, this report presents evidence for the existence of rich club organization in the cerebral cortex of a non-human primate, the macaque monkey, based on a connectivity data set representing a collation of numerous tract tracing studies. Rich club regions comprise portions of prefrontal, parietal, temporal and insular cortex and are widely distributed across network communities. An analysis of network motifs reveals that rich club regions tend to form star-like configurations, indicative of their central embedding within sets of nodes. In addition, rich club nodes and edges participate in a large number of short paths across the network, and thus contribute disproportionately to global communication. As rich club regions tend to attract and disperse communication paths, many of the paths follow a characteristic pattern of first increasing and then decreasing node degree. Finally, the existence of non-reciprocal projections imposes a net directional flow of paths into and out of the rich club, with some regions preferentially attracting and others dispersing signals. Overall, the demonstration of rich club organization in a non-human primate contributes to our understanding of the network principles underlying neural connectivity in the mammalian brain, and further supports the hypothesis that rich club regions and connections have a central role in global brain communication.</p></div

    Directionality of paths and rich club.

    No full text
    <p>The figure presents distributions of short communication paths leading into (“in-paths”) and emerging from (“out-paths”) rich club nodes. Plots at the top are for RC1 regions, and plots at the bottom are for RC2 regions. Data shown are for paths that begin and end on non-RC nodes. (A) Scatter plot of degree imbalance (in-degree minus out-degree) and path imbalance (in-paths minus out-paths) for the macaque cortex (red markers) and for averages obtained from 200 randomized networks preserving degree sequence (gray markers). Note that node degree imbalances are identical for randomized networks. Region names in large black font mark regions for which the difference between macaque and random population is significant (p<0.01, uncorrected). (B) The in-out paths ratio, shown here for the macaque cortex, is computed as (in-paths−out-paths)/(in-paths+out-paths). Black bars indicate regions for which the in-out paths ratio is significantly different (p<0.01, uncorrected) compared to that of a population of 200 randomized networks.</p

    Communication cost and path structure.

    No full text
    <p>(A) Bar plots display the proportions of rich club (“R”, red), feeder (“F”, orange) and local (“L”, yellow) connections to network density and communication cost, shown for RC1 and RC2. (B) Heatmap (gray scale) of node degrees encountered along paths of path length (pl) 2, 3, 4, and 5. The median degrees are indicated in blue, and minimum degrees for nodes that are members of RC1 and RC2 are shown in red. The plot aggregates data on all paths starting and ending on non-rich club (non-RC2) nodes. Similar plots are obtained for paths starting and ending on non-RC1 nodes (not shown). (C) Proportion (probability) of touching an RC2 node plotted along all paths of lengths 2 to 5 steps. (D) Proportion (probability) of traveling along an RC2 edge plotted along all paths of lengths 3 to 5 steps. In panels (C) and (D), black symbols represent data from the macaque network, gray symbols represent means from 200 randomized networks preserving node degree sequence. Asterisks indicate that macaque data exceed the values from the empirical null distributions at p<0.05 (one-sided, uncorrected).</p

    Rich club detection and node/edge classification.

    No full text
    <p>(A) Example networks, each composed of 48 nodes and 123 undirected edges, and displayed using a spring-embedding layout algorithm. Both networks contain a set of high-degree nodes (red). In the network at the top, these nodes are interconnected with a density (rich-club coefficient) of 0.711. The network below was derived by randomizing the original network, preserving all node degrees. High-degree nodes are again shown in red, and their connection density is 0.578. Comparison of the network at the top to a population of 10,000 randomized networks indicates the presence of a rich club, with p = 0.0004. Note that due to constraints imposed by the degree sequence high-degree nodes in the randomized network remain linked with an edge density that exceeds that of the network as a whole. (B) Identification of rich club nodes allows the classification of edges into rich club, feeder and local edges.</p

    Motif contributions of rich club regions.

    No full text
    <p>(A) Apex motifs 4, 6 and 9 are statistically overrepresented as compared to both randomized and latticized null models (z-scores 13.1, 12.3, and 59.5 against randomized controls; 15.1, 16.9 and 2.2 against latticized controls). All 13 3-node motifs are shown at the bottom. (B) Scatter plot of apex ratio (for all three apex motifs) and clustering coefficient for all 242 regions, with RC1 and RC2 color coded. (C) Examples of star-like motifs centered on rich club regions 46, 13a, and LIP. All surrounding regions are reciprocally connected to the center and unconnected otherwise. Regions are color coded by their module assignment.</p

    Comparison of core subshells and rich club members.

    No full text
    <p>In both plots, the nodes are arranged along a circle, in the same order (by module and degree) used for displaying the connection matrix in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0046497#pone-0046497-g002" target="_blank">Figure 2A</a>, starting counterclockwise at the top. (A) Core subshell levels are displayed as concentric rings, with the innermost subshell nearest to the center of the circle. Regions are marked as black dots according to their subshell level. (B) Rich club levels are displayed as concentric rings, with the tightest rich club (RC1) corresponding to rich club level 1. Regions are marked as black dots according to their rich club level.</p

    Rich club regions and their spatial distribution.

    No full text
    <p>(A) List of rich club member regions across all 14 rich club levels. Member regions of RC1 and RC2 are indicated, as are connector hubs (listed in blue). (B) Surface map of RC levels. (C) Surface maps of RC1 and RC2 member regions.</p

    Connection matrix and network communities (modules).

    No full text
    <p>(A) Binary connection matrix comprising 242 regions and 4090 directed projections. Regions are arranged by module assignment, and within each module they are ranked by their degree (sum of in-degree and out-degree). The node ordering and module assignments are reported in the Supplementary Information. (B) Surface rendering of the inflated right hemisphere of macaque cortex, with surface regions color-coded by to their module assignments. Some points on the surface corresponded to multiple cortical regions since multiple schemes for regional parcellations were used for surface mapping. This could lead to multiple module assignment for a given surface point. In case of multiple assignments, regions were colored according to a majority rule, choosing the mode of the distribution of module assignments. In the case of a tie, a module was chosen at random from the tied set, resulting in a mottled appearance. Surface plots at left and right show lateral (L) and medial (M) views; plots at top and bottom show ventral (V) and dorsal (D) views.</p

    Patterns of symptom development in patients with motor neuron disease

    No full text
    <p><i>Objective</i>: To investigate whether symptom development in motor neuron disease (MND) is a random or organized process. <i>Methods</i>: Six hundred patients with amyotrophic lateral sclerosis (ALS), upper motor neuron (UMN) or lower motor neuron (LMN) phenotypes were invited for a questionnaire concerning symptom development. A binomial test was used to examine distribution of symptoms from site of onset. Development of symptoms over time was evaluated by Kaplan-Meier analysis. <i>Results</i>: There were 470 respondents (ALS = 254; LMN = 100; UMN = 116). Subsequent symptoms were more often in the contralateral limb following unilateral limb onset (ALS: arms <i>p</i> = 1.05 × 10<sup>−8</sup>, legs <i>p</i> < 2.86 × 10<sup>−15</sup>; LMN phenotype: arms <i>p</i> = 6.74 × 10<sup>−9</sup>, legs <i>p</i> = 6.26 × 10<sup>−6</sup>; UMN phenotype: legs <i>p</i> = 4.07 × 10<sup>−14</sup>). In patients with limb onset, symptoms occurred significantly faster in the contralateral limb, followed by the other limbs and lastly by the bulbar region. Patterns of non-contiguous symptom development were also reported: leg symptoms followed bulbar onset in 30%, and bulbar symptoms followed leg onset in 11% of ALS patients. <i>Conclusions</i>: Preferred spread of symptoms from one limb to the contralateral limb, and to adjacent sites appears to be a characteristic of MND phenotypes, suggesting that symptom spread is organized, possibly involving axonal connectivity. Non-contiguous symptom development, however, is not uncommon, and may involve other factors.</p

    DATA_TASK_3DMOV_HP_CSF_WD

    No full text
    Briefly, data comes from five functional runs consisting of a resting-state measurement (eyes closed), four individual task measurements including a visual n-back (n=2) task (Kirchner, 1958), the Eriksen flanker task (Eriksen & Eriksen, 1974), a mental rotation task (Shepard & Metzler, 1971), and a verbal odd-man-out task (Flowers & Robertson, 1985). All runs comprise 192 data points with tasks being continuously performed during this period. For the n-back and flanker task, stimuli were presented at a rate of 0.5 Hz; for the mental rotation and odd-man out tasks they were presented at a rate of 0.25 Hz. Task sequence was counterbalanced across participants with the exception that the resting state functional run was always acquired first to prevent carry-over effects (Grigg & Grady, 2010). The data were acquired using a 3 Tesla Siemens Prisma Fit (upgraded Tim Trio) scanner and a 64-channel head coil. Initial preprocessing was performed using BrainVoyager QX (v2.6; Brain Innovation, Maastricht, the Netherlands). This includes slice scan time correction, 3D-motion correction, high-pass filtering with a frequency cutoff of .01 Hz, and registration of functional and anatomical images. Subsequently, using MATLAB (2013a, The MathWorks,Natick, MA), signals were cleaned by performing wavelet despiking (Patel & Bullmore, 2015) and regressing out a global noise signal given by the first principal component of signals observed within the cerebrospinal fluid of the ventricles. Next, voxels were uniquely assigned to one of the 68 cortical ROIs specified by the DK atlas and an average BOLD time-series was computed for each region as the mean time-series over all voxels of that region
    corecore