126 research outputs found

    Stable triplet-state di(cation radical)s of a N-phenylaniline oligomer

    Full text link

    Impact of Alkyl Chain Length on the Formation of Regular- and Reverse-Graded Quasi-2D Perovskite Thin Films

    Get PDF
    Crystallization of low-dimensional perovskites is a complex process that leads to multidimensional films comprising two-dimensional (2D), quasi-2D, and three-dimensional (3D) phases. Most quasi-2D perovskite films possess a regular gradient with 2D phases located at the bottom of the film and 3D phases at the top. Recently, multiple studies have reported reverse-graded perovskite films, where the location of the 2D and 3D structures is inverted. The underlying reasons for such a peculiar phase distribution are unclear. While crystallization of regular-graded quasi-2D perovskites has been described as starting with 3D phases from the liquid-air interface, the film formation of reverse-graded films has not been investigated yet. Here, we examine the impact of the alkyl chain length on the formation of regular- and reverse-graded perovskites using n-alkylammonium ions. We find that long alkyl chains reverse the phase distribution gradient. By combining photoluminescence spectroscopy with in situ optical absorption measurements, we demonstrate that crystallization starts at the liquid-N2 interface, though as 3D phases for short-chain n-alkylammonium ions and as quasi-2D phases for long chains. We link this behavior to enhanced van der Waals interactions between long-chain n-alkylammonium ions in polar solvents and their tendency to accumulate at the liquid-N2 interface, creating a concentration gradient along the film thickness.</p

    Triplet-state phosphinyl diradicals

    Full text link

    High-Spin Cation Radicals of Methylenephosphoranes

    Full text link

    Quadruple junction polymer solar cells with four complementary absorber layers

    Get PDF
    A monolithic two‐terminal solution‐processed quadruple junction polymer solar cell in an n–i–p (inverted) configuration with four complementary polymer:fullerene active bulk‐heterojunction layers is presented. The subcells possess different optical bandgaps ranging from 1.90 to 1.13 eV. Optical modeling using the transfer matrix formalism enables prediction of the fraction of absorbed photons from sunlight in each subcell and determine the optimal combination of layer thicknesses. The quadruple junction cell features an open‐circuit voltage of 2.45 V and has a power conversion efficiency of 7.6%, only slightly less than the modeled value of 8.2%. The external quantum efficiency spectrum, determined with appropriate light and voltage bias conditions, exhibits in general an excellent agreement with modeled spectrum. The device performance is presently limited by bimolecular recombination, which prevents using thick photoactive layers that could absorb light more efficiently

    Triplet-State Phosphoryl Diradicals

    Full text link

    Photovoltaic performance of an ultrasmall band gap polymer

    Get PDF
    A conjugated polymer (PBTTQ) that consists of alternating electron-rich bithiophene and electron-deficient thiadiazoloquinoxaline units was synthesized via Yamamoto polymerization with Ni(cod)(2) and provides a band gap of 0.94 eV. This represents one of the smallest band gaps obtained for a soluble conjugated polymer. When applied in a bulk heterojunction solar cell together with [84]PCBM as the electron acceptor, the polymer affords a response up to 1.3 mu m

    Crystalline silicon solar cells with thin poly-SiO<sub>x</sub> carrier-selective passivating contacts for perovskite/c-Si tandem applications

    Get PDF
    Single junction crystalline silicon (c-Si) solar cells are reaching their practical efficiency limit whereas perovskite/c-Si tandem solar cells have achieved efficiencies above the theoretical limit of single junction c-Si solar cells. Next to low-thermal budget silicon heterojunction architecture, high-thermal budget carrier-selective passivating contacts (CSPCs) based on polycrystalline-SiOx (poly-SiOx) also constitute a promising architecture for high efficiency perovskite/c-Si tandem solar cells. In this work, we present the development of c-Si bottom cells based on high temperature poly-SiOx CSPCs and demonstrate novel high efficiency four-terminal (4T) and two-terminal (2T) perovskite/c-Si tandem solar cells. First, we tuned the ultra-thin, thermally grown SiOx. Then we optimized the passivation properties of p-type and n-type doped poly-SiOx CSPCs. Here, we have optimized the p-type doped poly-SiOx CSPC on textured interfaces via a two-step annealing process. Finally, we integrated such bottom solar cells in both 4T and 2T tandems, achieving 28.1% and 23.2% conversion efficiency, respectively.</p
    corecore