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Abstract

Single junction crystalline silicon (c-Si) solar cells are reaching their practical efficiency

limit whereas perovskite/c-Si tandem solar cells have achieved efficiencies above the

theoretical limit of single junction c-Si solar cells. Next to low-thermal budget silicon

heterojunction architecture, high-thermal budget carrier-selective passivating con-

tacts (CSPCs) based on polycrystalline-SiOx (poly-SiOx) also constitute a promising

architecture for high efficiency perovskite/c-Si tandem solar cells. In this work, we

present the development of c-Si bottom cells based on high temperature poly-SiOx

CSPCs and demonstrate novel high efficiency four-terminal (4T) and two-terminal

(2T) perovskite/c-Si tandem solar cells. First, we tuned the ultra-thin, thermally grown

SiOx. Then we optimized the passivation properties of p-type and n-type doped poly-

SiOx CSPCs. Here, we have optimized the p-type doped poly-SiOx CSPC on textured

interfaces via a two-step annealing process. Finally, we integrated such bottom solar

cells in both 4T and 2T tandems, achieving 28.1% and 23.2% conversion efficiency,

respectively.
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1 | INTRODUCTION

Single junction c-Si solar cells are reaching their practical efficiency

limit.1,2 One way to further increase the efficiency of solar cells based

on c-Si is to deploy them as bottom device in tandem structures with

a wide bandgap top device. Perovskite/c-Si tandem solar cells attract

considerable attention in this regard3–31 with certified conversion effi-

ciencies so far up to 32.5%.32 The two common tandem architectures

are a monolithically integrated two-terminal (2T) tandem configura-

tion, where the two devices are electrically connected via a tunnel

recombination junction (TRJ), and a mechanically stacked four-

terminal (4T) tandem configuration where the two devices are opti-

cally connected but electrically decoupled. The 2T tandem solar cell

design has simple electrical connections but requires current matching

between the two devices to reach optimal efficiency. It is thus sensi-

tive to the daily variations of solar spectrum. The 4T tandem configu-

ration does not require current matching between its component

devices and so has fewer restrictions on the device optimizations.

However, due to the devices being electrically decoupled, each of

them has its own transport layers and additional encapsulation layers

for optical coupling, which increases the overall parasitic absorption.

The advantages and disadvantages of 2T and 4T tandem configura-

tions have been explored before.4,33–35 As bottom device, besides sili-

con heterojunction (SHJ) cells,3–7,24–27 silicon solar cells based on

high-thermal budget carrier-selective passivating contacts (CSPCs)

have rarely been reported.8,28–30 Such CSPCs are so-called because

they require high temperature fabrication steps, which can be up to

1100�C. Polycrystalline silicon (poly-Si) is an example of these high-

thermal budget CSPCs and has enabled high efficiency single junction

c-Si solar cells,36–40 concurrently yielding high quality surface passiv-

ation and charges transport. However, doped poly-Si exhibits a high

free carrier absorption, which has turned the attention of researchers

towards wide bandgap materials, such as polycrystalline-SiCx
41,42 and

polycrystalline-SiOx (poly-SiOx), which can be more transparent while

ensuring similar conductivity with respect to poly-Si.43,44 Such CSPCs

consist of doped poly-Si, alloyed with carbon or oxygen, which are

deposited on an ultra-thin SiOx layer, prepared by a wet-chemical pro-

cess (nitric acid oxidation of silicon, NAOS),44 thermal oxidation,45

UV/O3 process,46 or low-temperature plasma oxidation.47 The opto-

electronic properties of poly-SiOx depend on the oxygen content.44,48

Poly-SiOx is a novel material that has been successfully employed in

c-Si single junction solar cells44,48,49 and, to the best of our knowl-

edge, its long-wavelength optical potential in tandems has not been

explored so far. As these CSPCs are compatible with high temperature

production processes, they are appealing to the mainstream c-Si PV

industry. In view of potential tandem efficiencies well above 30%,

perovskite/c-Si tandem solar cells with bottom cells fabricated with

high-thermal budget CSPCs can significantly reduce the levelized cost

of electricity compared to single junction silicon photovoltaics.50

Solar cells fabricated with poly-SiOx CSPCs on an ultra-thin

tunnelling SiOx layer grown via NAOS process have exhibited active

area efficiency of around 21% in a front/back contacted (FBC) archi-

tecture.49 However, these cells were 2-cm2 wide and deployed

thermally evaporated metal contacts. In this work, next to adopting

screen printing for metallization and developing larger area devices

(from 2 to 4 cm2), an ultra-thin SiOx layer prepared by thermal oxida-

tion of the c-Si surface is used as tunnelling SiOx. As compared with

tunnelling oxide grown via NAOS, thermal oxides are denser and less

prone to blistering, have lesser bulk defects, provide better wafer

chemical passivation,51 and are more stoichiometric resulting in higher

thermal stability.52 Other advantages of using a thermal oxide are

(i) the controllability over the oxide thickness and its microstructures

by changing the oxygen flow rate, temperature, and time and (ii) the

industrial applicability in state-of-the-art furnaces.

We optimized the passivation of both n-type and p-type doped

poly-SiOx on the ultra-thin thermally grown SiOx especially because

p-type poly-SiOx on textured surfaces has been a limiting factor in

terms of passivation.42,51,53 To this end, a two-step annealing process

was used to improve the passivation quality of p-type poly-SiOx

CSPCs on textured interfaces. Finally, we studied the integration of c-

Si solar cells endowed with these optimized high-thermal budget

CSPCs in perovskite/c-Si 4T and 2T tandem devices, achieving con-

version efficiency of 28.07% and 23.18%, respectively.

2 | EXPERIMENTAL DETAILS

2.1 | Crystalline silicon (c-Si) solar cells

We used 4-in. n-type float zone (FZ) double-side polished (DSP) Topsil

wafers (orientation: <100>, resistivity: 1–5 Ω cm, thickness: 280

± 20 μm). For double-side textured (DST) solar cells, both sides of the

wafers were textured in a tetramethylammonium hydroxide (TMAH)

solution containing ALKA-TEX (GP-Solar-GmbH) as additive. For

single-side textured (SST) solar cells, the front side was protected by a

thick silicon dioxide (SiO2) layer deposited using plasma-enhanced

chemical vapor deposition (PECVD). After partially texturing the

wafer, the SiO2 layer was etched using a buffered hydrogen fluoride

(BHF [1:7]) solution. Subsequently, the samples were cleaned by dip-

ping them in HNO3 (99%), to remove eventual organic contamina-

tions, and then in HNO3 (69.5%, at 110�C) to remove inorganic

contaminations. The samples are then dipped in 0.55% HF solution to

remove any native oxide layer before thermal oxidation to grow a thin

tunnelling oxide layer. Here, after preliminarily investigating an opti-

mal growth temperature (ultimately fixed at 675�C), the time of the

thermal oxidation process is optimized. Then, both the n-type and the

p-type poly-SiOx passivating contacts are deposited on the thermal

oxide with a dual-stack layer of 10-nm thick intrinsic a-Si layer using

low-pressure chemical vapor deposition (LPCVD) process and 20-nm

thick doped a-SiOx:H layer from the PECVD process. Silane (SiH4),

carbon dioxide (CO2), and hydrogen (H2) gases are used as the sources

to deposit these poly-SiOx passivating contacts. Phosphine (PH3) and

diborane (B2H6) gases are used as doping sources for n-type and p-

type poly-SiOx passivating contacts, respectively.48 The dopant con-

centration of such poly-SiOx CSPCs is in the order of 1020 cm�3.43,48

The total thickness of the passivating contact hereby described will
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not overcome 30 nm. Because of that thickness, an additional trans-

parent conductive oxide (TCO) layer is needed for lateral transport of

carriers. Also here, after an initial study on the optimal annealing tem-

perature seeking for an eventual co-annealing temperature between

the n-type and p-type doped layers, these samples were annealed at

950�C between 5 and 15 min to crystallize the abovementioned films

into poly-SiOx layers and drive in the dopants for both DST and SST

cells. In this high temperature process, hydrogen effuses from the

whole layer stack. Therefore, these cell precursors were hydrogenated

by forming gas annealing (FGA) at 400�C for 1 h after being prelimi-

narily capped with a 100-nm thick PECVD SiNx layer.54 Upon the

removal of the SiNx capping layer, indium tin oxide (ITO) layers were

sputtered to ensure efficient (i) lateral carrier transport of charge car-

riers and (ii) optical performance at the front side as an anti-reflective

coating (75 nm) and at the rear side as an optical buffer for the rear

reflector (150 nm).55 As this step deteriorates the passivation

quality,49,56,57 an additional annealing was executed in hydrogen for

1 h at 400�C. Finally, screen printing and curing for 30 min at 170�C

was used to realize low-temperature front and rear Ag-based metallic

contacts. We have also fabricated a front side flat (rear side textured)

c-Si solar cell that is deployed in 2T tandem devices (see Figure 1).

The fabrication of such an architecture is described in more detail in

Section 2.2. The current–voltage measurements of c-Si solar cells

were performed using an AAA class Wacom WXS-90S-L2 solar simu-

lator. The best SST and DST devices were certified at the CalTeC of

the Institute for Solar Energy Research Hamelin (ISFH), Germany,

which provided also the related external quantum efficiency (EQE)

spectra (illumination in-between the front metal fingers). For passiv-

ation tests, symmetrical samples were fabricated with n-type or p-

type doped poly-SiOx CSPCs on flat and textured c-Si wafers. A life-

time tester (Sinton WCT-120) was used to perform passivation mea-

surements, such as implied open-circuit voltage (iVoc), on precursors

in quasi-steady-state photoconductance (QSSPC) or transient photo-

conductance decay (transient PCD) mode.58,59

2.2 | Perovskite/c-Si tandem solar cells

For 2T perovskite/c-Si tandem solar cells, SST solar cells were fabri-

cated with front side flat n-type poly-SiOx and rear side textured p-

type poly-SiOx. This configuration of the bottom sub-cell is chosen to

meet the requirements for depositing the perovskite top device in a

p-i-n configuration. After high temperature annealing (900�C for

15 min) and the abovementioned hydrogenation step, the SiNx cap-

ping layer was removed. This was followed by sputtering 30-nm

(150-nm) thick ITO layer on the front (rear) side of the cell. Finally, a

500-nm thick Ag layer was deposited on the rear side of the cell using

thermal evaporation. Atomic layer deposition (ALD), in combination

with solution processing, thermal evaporation, and sputtering were

used to fabricate the perovskite top device. On the front, flat ITO

layer of the bottom device, the perovskite top device comprised in a

bottom-up sequence NiOx/2-(9H-carbazol-9-yl)ethyl]phosphonic acid

(2PACz)/perovskite (1.67 eV)/C60/SnOx/ITO/MgF2. The front electri-

cal contact was made of evaporated silver. The 8-nm thick NiOx layer

F IGURE 1 Sketches of the various solar cells reported in this work. The c-Si single junction solar cells endowed with p-type and n-type poly-
SiOx carrier-selective passivating contacts (CSPCs) are shown in the dashed box at the bottom left. The perovskite top cell is shown at top left.
The abbreviations used are anti-reflection coating (ARC), transparent conductive oxide (TCO), hole transporting layer (HTL) and electron
transporting layer (ETL). The single-side textured (SST) with front textured and the double-side textured (DST) solar cells are then combined with
perovskite top cell to form 4T perovskite/c-Si tandem devices. The SST with rear textured solar cell is used for the 2T perovskite/c-Si tandem
device. The indium tin oxide (ITO) layers of top and bottom cells in the 2T perovskite/c-Si tandem are processed in different labs on different
layers, for which some differences in both optical and electrical properties are expected.

SINGH ET AL. 879
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was deposited on the ITO layer using thermal ALD.60,61 The deposi-

tion was done at a base pressure of 5 � 10�6 mbar in a home-built

reactor using nickel bis(N,N0-di-tert-butylacetamidinate) (Ni(tBu-

MeAMD)2) as nickel precursor and water as the co-reactant. The pre-

cursor bubbler was maintained at 90�C, and an Ar flow was used for

bubbling. The substrate temperature approached 150�C during the

deposition. Subsequent solution-processed and evaporated layers

were processed in an inert atmosphere. 2PACz (TCI, 98%, dissolved

0.3 mg/mL in ethanol) was deposited by spin coating at 3000 rpm for

30 s followed by annealing the substrate at 100�C for 10 min.62 The

perovskite precursor solution was prepared by mixing 936 μL PbI2

(TCI, >99.99%, 691.5 mg/mL in DMF:DMSO 4:1) with formamidinium

iodide (FAI, Greatcell Solar Materials) (199.9 mg) and 936 μL PbBr2

(TCI, >99%, 550.5 mg/mL in DMF:DMSO 4:1) with methylammonium

bromide (MABr, Greatcell Solar Materials) (133.1 mg), followed by

mixing the FAPbI3 and MAPbBr3 solutions in a 79:21 (v/v) ratio and

adding 5 vol.% CsI (Sigma Aldrich, 99.999%, dissolved 389.7 mg/mL in

DMSO) and 5 vol.% KI (Alfa Aesar, 99.998%, dissolved 249.0 mg/mL

in DMF:DMSO 4:1). The precursor was spin-coated at 4000 rpm (5 s

to reach 4000 rpm) for 35 s; at 25 s from the start of spin coating,

300 μL anisole was cast onto the substrate leading to perovskite crys-

tallization. The substrate was then placed on a hot-plate, and the film

was annealed at 100�C for 30 min. Following the substrate cooling

down, choline chloride (Sigma Aldrich, >99%, 1 mg/mL in 2-propanol)

was dynamically spin-coated at 4000 rpm for 35 s followed by ther-

mal annealing at 100�C for 30 min. Then, C60 (10 nm) was deposited

by thermal evaporation at a rate of 0.5 Å/s. Following that, spatial

atomic layer deposition (s-ALD) was used to deposit a SnO2 (20 nm)

buffer layer.63 Tetrakis(dimethylamino)tin(IV) was used as tin precur-

sor and water as the co-reactant. A nitrogen curtain was used to iso-

late the two half-reaction steps. A 180-nm thick ITO layer was

deposited using Radio Frequency (RF) sputtering process at a rate of

0.3 Å/s. Finally, a 100-nm thick Ag perimeter contact and a 120-nm

thick MgF2 anti-reflective coating were thermally evaporated to com-

plete the tandem device. More information about this solar cell stack

can be found in the research thesis of Kunal Datta.64 Schematic

sketches of single junction solar cells combined with perovskite solar

cells in 4T and 2T tandem devices are reported in Figure 1.

Current density–voltage (J–V) scans of the 2T perovskite/c-Si

tandem solar cells were done using a tungsten-halogen illumination

source filtered by a UV filter (Schott GG385) and a daylight filter

(Hoya LB120) with intensity adjusted to 100 mW/cm2. A 1-cm2

shadow mask was used. The solar cells were operated under reverse

or forward sweeps (between +2.0 V and �0.5 V for tandem solar

cells) at a rate of 0.25 V/s using a Keithley 2400 source meter. The

EQE measurements of the 2T perovskite/c-Si tandem solar cells were

performed using a modulated monochromatic probe light (Philips

focusline, 50 W) through a 1-mm radius aperture. The response was

recorded and converted to the EQE using a calibrated silicon refer-

ence cell. Light- and voltage-biasing was used to isolate the EQE of

the individual devices; 530 nm (perovskite) or 940 nm (silicon) bias

light and a forward bias close to the open-circuit voltage of the single

junction solar cell were used.

The single junction c-Si solar cells, described in Section 2.1, were

combined with earlier processed and certified semi-transparent

perovskite solar cells65–68 to fabricate the 4T tandem devices. The

efficiency of 4T tandem cells was determined by following the proce-

dure described by Werner et al.69 Next to the conversion efficiency

of our 4T tandem devices, another outcome of this procedure was the

filtered EQE of the deployed bottom devices.

3 | RESULTS AND DISCUSSION

3.1 | Passivation properties of poly-SiOx CSPCs

Here, we optimized the passivation quality of n-type and p-type

doped poly-SiOx CSPCs. Because SST poly-SiOx passivated c-Si solar

cell has n-type doped poly-SiOx CSPC applied on front textured inter-

face and p-type doped poly-SiOx applied on rear side flat interface,

we optimized n-type doped poly-SiOx CSPC on DST symmetric sam-

ples and p-type doped poly-SiOx on DSP symmetric samples (see

Figure 2a). On the other hand, for DST poly-SiOx passivated c-Si solar

cell, we optimize both n-type and p-type doped poly-SiOx CSPC

applied on DST symmetric samples (see Figure 2b). As mentioned ear-

lier in Section 2.1, these CSPCs are prepared stacking doped poly-

SiOx layers on a tunnelling oxide grown by thermal oxidation on a c-Si

FZ wafer, followed by a high temperature annealing step. The passiv-

ation results in Figure 3 were obtained after the high temperature

annealing step. We use two parameters to optimize the passivation of

these CSPCs: (1) the thermal oxidation time for the growth of tunnel-

ling oxide and (2) the annealing time. Figure 3a,b shows the passiv-

ation (in terms of iVoc) of p-type doped poly-SiOx CSPC applied on

DSP symmetrical sample and n-type doped poly-SiOx applied on DST

symmetrical sample, respectively, for different thermal oxidation time

at 675�C (shown with different colors). Three annealing times (5, 10,

and 15 min at 950�C) were considered for each thermal oxidation

time. For both p-type doped CSPC on DSP wafers and n-type doped

poly-SiOx CSPC on DST wafers, we found the same optimal thermal

conditions for the tunnelling SiOx and the high temperature annealing:

6 min at 675�C and 10 min at 950�C, respectively (see Figure 3a for

p-type case and Figure 3b for n-type case).

On the other hand, for the symmetric p-type doped poly-SiOx on

DST wafer, notwithstanding the optimum found again at 10 min of

thermal annealing in Figure 3c, thermally grown tunnelling SiOx pre-

pared at 675�C for 3 min was found to yield better results (iVoc

�640 mV) than the rest of the samples. The underwhelming passiv-

ation performance of these DST samples can be ascribed to a strong

Auger recombination due to the excessive diffusion of dopants in the

c-Si bulk. To quench such a diffusion, a two-step annealing was

used.70,71

The first annealing step, done after the intrinsic a-Si layer deposi-

tion, was performed at 950�C for 1 min. This was meant to render this

intrinsic silicon denser72 and therefore harder for dopants to be

crossed. The second annealing step, done after the deposition of the

doped a-SiOx:H layer, was performed at 950�C between 5 and 15 min

880 SINGH ET AL.
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like in previous cases so far discussed. For this new series of samples,

thermally grown tunnelling SiOx was prepared at 675�C for 3 min.

The passivation results for the symmetric p-type doped poly-SiOx on

DST wafers are reported in Figure 3d, showing more than 20 mV

improvement with respect to the best passivation achieved with the

single-step annealing.

As described in Section 2.1, hydrogenation by FGA after SiNx

layer capping is performed on p-type and n-type doped CSPCs to

reintroduce the hydrogen that effused after high temperature anneal-

ing. Figure 4 shows the comparison in passivation of p-type and n-

type doped poly-SiOx symmetric samples after thermal annealing and

after hydrogenation. The optimum thermal oxidation and annealing

conditions, as described in Figure 3, have been chosen for each type

of CSPC. We observe that p-type and n-type doped poly-SiOx CSPCs

applied on DSP and DST symmetric samples, respectively, gave the

same iVoc of 690 mV after high temperature annealing, which

improved to 710 mV after hydrogenation. The p-type poly-SiOx sym-

metric sample without two-step annealing gave an iVoc of 668 mV

after hydrogenation. Using the two-step annealing technique, the

symmetric p-type doped poly-SiOx applied on DST wafer exhibited an

iVoc of 687 mV after hydrogenation. Applying the same two-step

annealing technique to symmetric n-type doped poly-SiOx on DST

F IGURE 2 (a) Single-side textured (SST) poly-SiOx passivated c-Si solar cell with (top) symmetric n-type doped poly-SiOx on double-side
textured (DST) substrate and (bottom) symmetric p-type doped poly-SiOx double-side polished (DSP) substrate; (b) DST poly-SiOx passivated c-Si
solar cell with symmetric (top) n-type doped poly-SiOx and (bottom) p-type doped poly-SiOx on DST substrates. ITO, indium tin oxide.

F IGURE 3 Implied Voc of
symmetric (a) p-type doped poly-SiOx

on double-side polished (DSP) wafer,
(b) n-type doped poly-SiOx on double-
side textured (DST) wafer, and (c) p-
type doped poly-SiOx on DST wafer for
different thermal oxidation times
(thermal oxidation temperature is fixed
at 675�C) and three annealing times
(annealing temperature is fixed at
950�C). These three diagrams share the
same legend. (d) Implied Voc of
symmetric p-type doped poly-SiOx on
DST wafer with two-step annealing. In
this case, the thermal oxidation
temperature and time are fixed at
675�C for 3 min. Here, the first step
annealing temperature and time have
been varied. For each first step
annealing condition, a second step
annealing time of 5, 10, and 15 min is
considered, again at fixed annealing
temperature (950�C).
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wafer (including the thermally grown tunnelling SiOx prepared at

675�C for 3 min as in the p-type case), an iVoc of 690 mV was found

after hydrogenation, resulting in lower passivation quality than the

single-step annealing case. Here, as the intrinsic poly-Si layer resulting

from the first annealing got denser,72 we speculate that the phospho-

rus doping atoms do not easily reach the tunnelling SiOx/c-Si bulk

interface to establish an effective electric field. In addition, as shown

in Figure 3b, the tunnelling SiOx prepared at 675�C for 3 min is not

the best condition for the n-type doped poly-SiOx on a textured sur-

face. Still, this case is investigated (and later put forward in solar cell

fabrication) to realize a neat flow chart in which both n-type and p-

type doped poly-SiOx layers essentially undergo the same thermal

processes at the same time.

3.2 | Solar cell results

In this section, we report on the performance of single junction c-Si

solar cells with based on n-type and p-type poly-SiOx as CSPCs. The

sketches of SST and DST poly-SiOx passivated c-Si solar cell were

shown in Figure 2. The evolution of surface passivation quality after

annealing, hydrogenation, TCO deposition, and hydrogen annealing

for SST solar cell precursors is shown in Figure 5a. As expected, the

iVoc increases by 20 mV after hydrogenation. Then, the TCO deposi-

tion results in a considerable loss in iVOC from 714 to 690 mV due to

sputtering-related damages.49,57 This loss in passivation is recovered

by annealing the cell precursor at 400�C in hydrogen environment for

1 h.56 The best SST solar cell exhibited a certified designated area

power conversion efficiency (PCE) of 20.47% (Voc = 695 mV,

Jsc = 36.68 mA/cm2, FF = 80.33%, metallization faction �3%, desig-

nated area = 3.915 cm2, see Figure 5c). Moving from the previous

2-cm2 wide area device, SiOx layer grown via wet-chemical NAOS and

evaporated metallic contacts,49 as well as applying the further opti-

mized doped poly-SiOx layers, we could keep the Voc relatively high

(from 691 to 695 mV) and sensibly improve the FF (from 76.4% to

80.3%) of the solar cells based on poly-SiOx CSPCs.

As mentioned in Section 3.1, the p-type and n-type doped poly-

SiOx CSPCs with two-step annealing technique are used as the hole

and electron contacts in DST solar cells, respectively. The change in

passivation after different fabrication steps for the DST solar cell pre-

cursor is shown in Figure 5b. The increase in passivation after hydro-

genation and its decrease after ITO deposition are as expected.

However, unlike the SST case, the loss in passivation after TCO

deposition is not fully recovered after hydrogen annealing at 400�C

for 1 h. This is because the DST solar cell precursor has p-type doped

CSPC applied to the textured side, which is the limiting factor in

terms of passivation and does not recover its passivation

even after such a hydrogen annealing. The best DST solar cell gave a

certified designated area PCE of 19.44% (Voc = 655 mV,

Jsc = 37.85 mA/cm2, FF = 78.42%, metallization faction �3%, desig-

nated area = 3.903 cm2, see Figure 5d). Compared with the SST solar

cell, despite suffering from poorer surface passivation as witnessed by

the lower Voc and FF, the DST cell exhibits higher Jsc. This gain can be

ascribed to the textured rear side of the DST solar cell, which pro-

motes a more efficient light scattering at the rear side and thus higher

absorption in the c-Si bulk. Figure 6a shows the EQE of the SST and

DST devices. As expected, the EQE of the DST cell outperforms that

of the SST cell at wavelengths above 800 nm.

3.3 | Application in four-terminal (4T) perovskite/
c-Si tandem solar cells

The SST and DST poly-SiOx solar cells were deployed as bottom

devices in high efficiency 4T tandem devices together with a previ-

ously processed and certified perovskite top device (bandgap

1.60 eV).65–68 The schematic sketches of the two 4T tandem devices

alongside their constituting layers are presented in Figure 1. Following

the method of measurement reported by Werner et al.69 and with the

certified measurements of both semi-transparent perovskite top and

c-Si bottom devices, the combined results are summarized in Table 1.

The 4T tandem devices based on SST and DST poly-SiOx bottom

devices provide a PCE of 27.97% and 28.07%, respectively. Both SST

and DST cells, after being illuminated with the transmitted light

through the perovskite top device, experienced similar Jsc losses.

Looking at the filtered EQE (see Figure 6b), the DST cell keeps the

F IGURE 4 Implied Voc for different
types of carrier-selective passivating
contacts (CSPCs) after high temperature
annealing and after hydrogenation
processes. Here, tex is used to denote
textured.
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optical edge over the SST cell for every wavelength above 800 nm.

The SST cell loses however more in Voc and FF than the DST cell. In

fact, due to stronger Auger recombination at the p-type poly-SiOx/

tunnelling SiOx/c-Si wafer side, the DST cell had poorer Voc, which is

less sensitive to light-induced carriers' injection, and FF more domi-

nated by the low contact resistivity of the doped stack rather than an

efficient extraction of light-induced majority carriers.

3.4 | Application in two-terminal (2T) perovskite/
c-Si tandem solar cells

As sketched in Figure 1, we also fabricated SST solar cells with flat

front side coated with n-type poly-SiOx and textured rear side coated

with p-type poly-SiOx. This solar cell architecture was deployed to

form a 2T perovskite/c-Si tandem device with a p-i-n perovskite top

device. Due to the textured p-type poly-SiOx CSPC limiting the pas-

sivation quality, these solar cells suffered large passivation loss after

the ITO deposition. Again, some of the passivation loss was recovered

after annealing in hydrogen at 400�C for 1 h. The best single junction

solar cell achieved a designated area PCE of 16.67% (Voc = 649 mV,

Jsc = 34.28 mA/cm2, FF = 74.93%, metallization faction 3.15%, desig-

nated area = 3.92 cm2). The current density–voltage characteristic

and the EQE spectrum of the single junction solar cell are reported in

Figure 7a,b, respectively. From the EQE and reflectance spectra in

Figure 7b, we note large parasitic absorption at short wavelengths

(300–400 nm) and at very long wavelengths (1000–1200 nm). This

light is absorbed in the front/rear ITO and in the front/rear poly-SiOx

CSPCs. Between 600 and 1000 nm, other than the reflection losses,

most of the light is absorbed in c-Si solar cell.

F IGURE 5 (a–b) The evolution in
passivation quality (iVoc) after specific steps of
single-side textured (SST) and double-side
textured (DST) solar cell fabrication:
(1) annealing, (2) hydrogenation, (3) Transparent
conductive oxide (TCO) deposition, and
(4) hydrogen annealing; (c–d) certified current–
voltage and power–voltage curves of the best
SST and DST poly-SiOx passivated c-Si solar

cell. Sketches of SST and DST solar cells are
reported in Figure 2.

SINGH ET AL. 883

 1099159x, 2023, 9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/pip.3693 by T

echnical U
niversity E

indhoven, W
iley O

nline L
ibrary on [23/08/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



The abovementioned poly-SiOx passivated c-Si solar cell was

integrated with the perovskite top device into a 2T perovskite/c-Si

tandem device yielding an active area PCE of 23.18%

(Voc = 1.76 V, Jsc = 17.8 mA/cm2, FF = 74%, active area: 1 cm2,

see Figure 8a). The 2T tandem efficiency is higher than the effi-

ciency of its top device by 5%abs (with respect to an opaque analo-

gous single junction perovskite solar cell efficiency64,73) and the

efficiency of its bottom device by 6.5%abs. This efficiency is higher

than that of the earlier reported value of 21.3% for a monolithic

2T perovskite/PERC-POLO tandem device (perovskite/silicon tan-

dem featuring polycrystalline silicon on oxide (POLO) front junction

and a passivated emitter and rearcell (PERC)-type passivated rear

side with local aluminium p+ contacts).29 On the other hand, it is

lower than that of the earlier reported value of 25.1% for

monolithic 2T perovskite/c-Si tandem device where the bottom

device is endowed with poly-SiCx CSPCs.42 These three types of

high-thermal budget devices exhibit similar Vocs (1.74 to 1.8 V) and

FFs (74%) in 2T tandem devices while only the one with poly-SiCx

CSPCs could achieve better current matching between the devices

(19.5 mA/cm2). The EQE of the 2T tandem device (Figure 8b)

shows that our bottom device can deliver 19.2 mA/cm2, but that

the top device limits the short-circuit current density of the stack

to 17.8 mA/cm2. By further optimizing the layer thickness and

perovskite bandgap, the current generation of the two devices can

be better matched and consequently, the efficiency of the 2T

tandem devices can be further increased.

F IGURE 6 (a) External quantum efficiency
(EQE) spectra of the single-side textured (SST)
and double-side textured (DST) single junction
c-Si solar cells endowed with n-type and p-
type poly-SiOx carrier-selective passivating
contacts (CSPCs). (b) Filtered EQE spectra of
the same solar cells deployed as bottom
devices in 4T perovskite/c-Si tandem devices.

TABLE 1 External parameters of the semi-transparent perovskite top device (certified at ESTI, code XF812), the SST poly-SiOx bottom cell
(certified at ISFH CalTeC, code 0019018), and DST poly-SiOx bottom cell (certified at ISFH CalTeC, code 002603), and their 4T perovskite/c-Si
tandem device combinations.

Solar cell Description Voc (mV) Jsc (mA/cm2) FF (%) PCE (%)

Perovskite top device Single junction 1139 22.00 78.60 19.70

SST poly-SiOx-based bottom device Single junction 695 36.68 80.33 20.47

Filtered 666 16.00 77.60 8.27

4T Tandem 27.97

DST poly-SiOx-based bottom device Single junction 655 37.85 78.42 19.44

Filtered 637 16.80 78.20 8.37

4T Tandem 28.07

Abbreviations: DST, double-side textured; PCE, power conversion efficiency; SST, single-side textured. The efficiencies of the 4T tandem are obtained by

adding efficiencies of single junction c-Si and filtered perovskite top cell.

F IGURE 7 (a) Current density–voltage
characteristic and (b) external quantum
efficiency (EQE) and 1-Reflectance (1-R)
spectra of the single junction c-Si solar cell
with front side flat n-type poly-SiOx and rear
side textured p-type poly-SiOx. The schematic
of the corresponding structure is given in
Figure 1.
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4 | CONCLUSIONS

In this study, we optimized n-type and p-type poly-SiOx CSPCs on an

ultra-thin thermally grown tunnelling SiOx layer. We incorporated

these into single junction c-Si solar cells, which were eventually used

as bottom devices in 4T and 2T tandem devices. Good passivation

quality was achieved for textured n-type poly-SiOx (iVoc = 710 mV).

Using a two-step annealing process, the passivation quality of the tex-

tured p-type doped poly-SiOx could be improved too (iVoc = 687 mV).

With the developed n-type and p-type poly-SiOx CSPCs, we fabri-

cated �4-cm2 wide, screen-printed, a SST single junction c-Si solar

cell with certified efficiency of 20.47% and FF > 80%. Likewise, a cer-

tified efficiency of 19.44% was obtained for a DST cell endowed poly-

SiOx CSPCs. This DST solar cell architecture is presented here for the

first time and exhibits, without any dual anti-reflective coating, an

active area Jsc = 37.85 mA/cm2. This is in line with state-of-the-art

FBC SHJ solar cells and other architectures based on high-thermal

budget CSPCs.

We tested our c-Si solar cells in combination with a previously

processed and certified semi-transparent 19.70% perovskite solar cell.

The internally measured efficiencies of the 4T perovskite/c-Si tandem

devices featuring SST and DST poly-SiOx passivated c-Si bottom

devices are 27.97% and 28.07%, respectively.

Based on the improved passivation quality of the textured p-type

poly-SiOx, we fabricated SST solar cell with flat n-type poly-SiOx at

the front side and textured p-type poly-SiOx at the rear side with an

efficiency of 16.79%. Integrating such a poly-SiOx solar cell as bottom

device with a p-i-n perovskite solar cell on top resulted in a 2T tandem

device with an efficiency of 23.18%.
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