9 research outputs found

    Elucidating the Microscopic Origin of the Unique Optical Properties of Polypyrene

    No full text
    A combination of Time-Dependent Density Functional Theory (TD-DFT) and approximate coupled cluster theory (CC2) is used to elucidate the microscopic origin of the experimental observation that the absorption and fluorescence spectra of 1,3-polypyrene display a much smaller shift with chain length than other conjugated polymers. The optical absorption and fluorescence spectra of a large range of oligomers are calculated using TD-DFT and CC2 and successfully compared with available experimental data. The calculations show that the lowest singlet excitation is excitonic in nature and that this exciton becomes strongly localized upon excited state relaxation. This strong localization explains the negligible shift in fluorescence energy between the dimer/trimer and polymer, observed in experiment

    Modeling the Water Splitting Activity of a TiO<sub>2</sub> Rutile Nanoparticle

    No full text
    We explore, from a theoretical perspective, the effect of particle size on the photocatalytic water splitting activity of TiO<sub>2</sub> rutile (nano)­particles by a combination of explicit quantum chemistry calculations on a hydroxylated rutile nanoparticle in a realistic solvation environment and a comparison with the calculated properties of bulk rutile (surfaces) from the literature. Specifically, we use density functional theory (DFT) and time-dependent DFT to calculate the nanoparticle thermodynamic driving force for the water splitting half-reactions and identify in the process the crucial role of self-trapping of the free charge carriers responsible for proton reduction and water oxidation

    High-Throughput Screening Approach for the Optoelectronic Properties of Conjugated Polymers

    No full text
    We propose a general high-throughput virtual screening approach for the optical and electronic properties of conjugated polymers. This approach makes use of the recently developed xTB family of low-computational-cost density functional tight-binding methods from Grimme and co-workers, calibrated here to (Time-Dependent) Density Functional Theory ((TD)­DFT) data computed for a representative diverse set of (co)­polymers. Parameters drawn from the resulting calibration using a linear model can then be applied to the xTB derived results for new polymers, thus generating near DFT-quality data with orders of magnitude reduction in computational cost. As a result, after an initial computational investment for calibration, this approach can be used to quickly and accurately screen on the order of thousands of polymers for target applications. We also demonstrate that the (opto)­electronic properties of the conjugated polymers show only a very minor variation when considering different conformers and that the results of high-throughput screening are therefore expected to be relatively insensitive with respect to the conformer search methodology applied

    High-Throughput Screening Approach for the Optoelectronic Properties of Conjugated Polymers

    No full text
    We propose a general high-throughput virtual screening approach for the optical and electronic properties of conjugated polymers. This approach makes use of the recently developed xTB family of low-computational-cost density functional tight-binding methods from Grimme and co-workers, calibrated here to (Time-Dependent) Density Functional Theory ((TD)­DFT) data computed for a representative diverse set of (co)­polymers. Parameters drawn from the resulting calibration using a linear model can then be applied to the xTB derived results for new polymers, thus generating near DFT-quality data with orders of magnitude reduction in computational cost. As a result, after an initial computational investment for calibration, this approach can be used to quickly and accurately screen on the order of thousands of polymers for target applications. We also demonstrate that the (opto)­electronic properties of the conjugated polymers show only a very minor variation when considering different conformers and that the results of high-throughput screening are therefore expected to be relatively insensitive with respect to the conformer search methodology applied

    Shining a Light on <i>s</i>‑Triazine-Based Polymers

    No full text
    The strong interplay between the structure and optical properties of conjugated <i>s</i>-triazine-based framework (CTF) materials is explored in a combined experimental and computational study. The experimental absorption and fluorescence spectra of the CTF-1 material, a polymer obtained through the trimerization of 1,4-dicyanobenzene, are compared with the results of time-dependent density functional theory and approximate coupled cluster theory (CC2) calculations on cluster models of the polymer. To help explain the polymer data, we compare its optical properties with those measured and predicted for the 2,4,6-triphenyl-1,3,5-triazine model compound. Our analysis shows that CTFs, in line with experimental diffraction data, are likely to be layered materials based around flat hexagonal-like sheets and suggests that the long-wavelength part of the CTF-1 absorption spectrum displays a pronounced effect of stacking. Red-shifted peaks in the absorption spectrum appear that are absent for an isolated sheet. We also show that the experimentally observed strong fluorescence of CTF-1 and other CTF materials is further evidence of the presence of rings in the layers, as structures without rings are predicted to have extremely long excited state lifetimes and hence would display negligible fluorescence intensities. Finally, subtle differences between the experimental absorption spectra of CTF-1 samples prepared using different synthesis routes are shown to potentially arise from different relative arrangements of stacked layers

    Modeling Excited States in TiO<sub>2</sub> Nanoparticles: On the Accuracy of a TD-DFT Based Description

    No full text
    We have investigated the suitability of Time-Dependent Density Functional Theory (TD-DFT) to describe vertical low-energy excitations in naked and hydrated titanium dioxide nanoparticles. Specifically, we compared TD-DFT results obtained using different exchange-correlation (XC) potentials with those calculated using Equation-of-Motion Coupled Cluster (EOM-CC) quantum chemistry methods. We demonstrate that TD-DFT calculations with commonly used XC potentials (e.g., B3LYP) and EOM-CC methods give qualitatively similar results for most TiO<sub>2</sub> nanoparticles investigated. More importantly, however, we also show that, for a significant subset of structures, TD-DFT gives qualitatively different results depending upon the XC potential used and that only TD-CAM-B3LYP and TD-BHLYP calculations yield results that are consistent with those obtained using EOM-CC theory. Moreover, we demonstrate that the discrepancies for such structures originate from a particular combination of defects that give rise to charge-transfer excitations, which are poorly described by XC potentials that do not contain sufficient Hartree–Fock like exchange. Finally, we consider that such defects are readily healed in the presence of ubiquitously present water and that, as a result, the description of vertical low-energy excitations for hydrated TiO<sub>2</sub> nanoparticles is nonproblematic

    Describing Excited State Relaxation and Localization in TiO<sub>2</sub> Nanoparticles Using TD-DFT

    No full text
    We have investigated the description of excited state relaxation in naked and hydrated TiO<sub>2</sub> nanoparticles using Time-Dependent Density Functional Theory (TD-DFT) with three common hybrid exchange-correlation (XC) potentials: B3LYP, CAM-B3LYP and BHLYP. Use of TD-CAM-B3LYP and TD-BHLYP yields qualitatively similar results for all structures, which are also consistent with predictions of coupled-cluster theory for small particles. TD-B3LYP, in contrast, is found to make rather different predictions; including apparent conical intersections for certain particles that are not observed with TD-CAM-B3LYP nor with TD-BHLYP. In line with our previous observations for vertical excitations, the issue with TD-B3LYP appears to be the inherent tendency of TD-B3LYP, and other XC potentials with no or a low percentage of Hartree–Fock like exchange, to spuriously stabilize the energy of charge-transfer (CT) states. Even in the case of hydrated particles, for which vertical excitations are generally well described with all XC potentials, the use of TD-B3LYP appears to result in CT problems during excited state relaxation for certain particles. We hypothesize that the spurious stabilization of CT states by TD-B3LYP even may drive the excited state optimizations to different excited state geometries from those obtained using TD-CAM-B3LYP or TD-BHLYP. Finally, focusing on the TD-CAM-B3LYP and TD-BHLYP results, excited state relaxation in small naked and hydrated TiO<sub>2</sub> nanoparticles is predicted to be associated with a large Stokes’ shift

    Shedding Light on Structure–Property Relationships for Conjugated Microporous Polymers: The Importance of Rings and Strain

    No full text
    The photophysical properties of insoluble porous pyrene networks, which are central to their function, differ strongly from those of analogous soluble linear and branched polymers and dendrimers. This can be rationalized by the presence of strained closed rings in the networks. A combined experimental and computational approach was used to obtain atomic scale insight into the structure of amorphous conjugated microporous polymers. The optical absorption and fluorescence spectra of a series of pyrene-based materials were compared with theoretical time-dependent density functional theory predictions for model clusters. Comparison of computation and experiment sheds light on the probable structural chromophores in the various materials

    Solution-Processable Redox-Active Polymers of Intrinsic Microporosity for Electrochemical Energy Storage

    Get PDF
    Redox-active organic materials have emerged as promising alternatives to conventional inorganic electrode materials in electrochemical devices for energy storage. However, the deployment of redox-active organic materials in practical lithium-ion battery devices is hindered by their undesired solubility in electrolyte solvents, sluggish charge transfer and mass transport, as well as processing complexity. Here, we report a new molecular engineering approach to prepare redox-active polymers of intrinsic microporosity (PIMs) that possess an open network of subnanometer pores and abundant accessible carbonyl-based redox sites for fast lithium-ion transport and storage. Redox-active PIMs can be solution-processed into thin films and polymer–carbon composites with a homogeneously dispersed microstructure while remaining insoluble in electrolyte solvents. Solution-processed redox-active PIM electrodes demonstrate improved cycling performance in lithium-ion batteries with no apparent capacity decay. Redox-active PIMs with combined properties of intrinsic microporosity, reversible redox activity, and solution processability may have broad utility in a variety of electrochemical devices for energy storage, sensors, and electronic applications
    corecore