18 research outputs found

    Diketopiperazines from Alternaria dauci

    No full text
    International audienceAbstract. Alternaria dauci is the causal agent of Alternaria leaf blight (ALB), a foliar disease of carrot crops (Daucus carota) around the world. In terms of phytotoxic metabolites production, A. dauci has received limited attention. Previous studies carried out on the secondary metabolites involved in the pathogenicity of this fungus have only reported the isolation of a ubiquitous non-selective phytotoxin known as zinniol. Because of this, the aim of this research is directed towards the isolation and identification of secondary metabolites involved in the plant-pathogen interaction process. A. dauci was cultured in the Czapek-Dox medium, and the culture filtrate was extracted with ethyl acetate. The leaf-spot assay of fractions resulting from the partition process showed a phytotoxic effect in the ethyl acetate fraction. The chromatographic separation of ethyl acetate fraction allowed the isolation of seven diketopiperazines, identified as cyclo-(pro-val) (1), cyclo-(pro-leu) (2), cyclo-(pro-phe) (3), cyclo-(val-leu) (4), cyclo-(val-phe) (5), cyclo-(leu-phe) (6) and cyclo-(leu-tyr) (7). The structures of the different metabolites were established by comparing their spectroscopic (1H NMR) and spectrometric (GC-MS) data with those reported in the literature. Resumen. Alternaria dauci es el agente causal del tizón de la hoja (ALB), una enfermedad foliar que afecta los cultivos de zanahoria (Daucus carota) alrededor del mundo. En términos de producción de metabolitos fitotóxicos, A. dauci ha recibido una atención muy limitada. Estudios previos llevados a cabo sobre los metabolitos secundarios involucrados en la patogenicidad de este hongo, solo han reportado el aislamiento de una fitotoxina no selectiva y ubicua conocida como zinniol. Debido a lo anterior, el objetivo de esta investigación se dirige al aislamiento e identificación de metabolitos secundarios implicados en la interacción planta-patógeno. Para esto el fitopatógeno se cultivó en medio Czapek-Dox y el filtrado del cultivo se extrajo con acetato de etilo. La evaluación de las fracciones resultantes de la partición, en el ensayo de manchas foliares en hojas, mostró un efecto fitotóxico en la fracción de acetato de etilo. La separación cromatográfica de la fracción de acetato de etilo permitió el aislamiento de siete dicetopiperazinas identificadas como ciclo-(pro-val) (1), ciclo-(pro-leu) (2), ciclo-(pro-phe) (3), ciclo-(val-leu) (4), ciclo-(val-phe) (5), ciclo-(leu-phe) (6) y ciclo-(leu-tyr) (7). Las estructuras de los diferentes metabolitos se establecieron comparando sus datos espectroscópicos (1H RMN) y espectrométricos (CG-EM) con los reportados en la literatura

    Identification and Quantification of a Phytotoxic Metabolite from Alternaria dauci

    No full text
    International audienceAlternaria dauci is the causal agent of Alternaria leaf blight (ALB) in carrot (Daucus carota) crops around the world. However, to date, A. dauci has received limited attention in its production of phytotoxic metabolites. In this investigation, the bioassay-guided isolation of the extract from liquid cultures of A. dauci resulted in the isolation of two metabolites identified as α-acetylorcinol (1) and p-hydroxybenzoic acid (2), based on their spectroscopic data and results from chemical correlation reactions. Testing of both metabolites in different assays showed an important phytotoxic activity for p-hydroxybenzoic acid (2) when tested in the leaf-spot assay on parsley (Petroselinum crispum), in the leaf infiltration assay on tobacco (Nicotiana alata) and marigold (Tagetes erecta), and in the immersion assay on parsley and parsnip (Pastinaca sativa) leaves. Quantification of the two metabolites in the crude extract of A. dauci kept at different times showed that p-hydroxybenzoic acid (2) is one of the first metabolites to be synthesized by the pathogen, suggesting that this salicylic acid derivative could play an important role in the pathogenicity of the fungus

    Variations of Black Carbon Concentrations in Two Sites in Mexico: A High-Altitude National Park and a Semi-Urban Site

    No full text
    Black carbon (BC), a component of carbonaceous material, has an important role in the environment, and it is considered a short-lived climate forcer that plays a vital role in the global climate system. BC concentrations were analyzed during 2017 in two sites in Mexico, Juriquilla and Altzomoni, which have different emission sources and atmospheric dynamics. The annual average BC concentrations in 2017 were 0.84 ± 0.70 and 0.58 ± 0.37 µg m−3 for Juriquilla and Altzomoni, respectively. The principal contributors for the highest BC concentration in Juriquilla were anthropogenic sources, while pollutants transport from nearby cities was more important for Altzomoni. Comparison between this analysis and previous reports from 2015 for both sampling sites demonstrated an increase in BC concentration. Results of this study could contribute to a better understanding of BC effects under different emission conditions and provide a scientific reference for developing BC reduction strategies over Mexico

    Variations of Black Carbon Concentrations in Two Sites in Mexico: A High-Altitude National Park and a Semi-Urban Site

    No full text
    Black carbon (BC), a component of carbonaceous material, has an important role in the environment, and it is considered a short-lived climate forcer that plays a vital role in the global climate system. BC concentrations were analyzed during 2017 in two sites in Mexico, Juriquilla and Altzomoni, which have different emission sources and atmospheric dynamics. The annual average BC concentrations in 2017 were 0.84 ± 0.70 and 0.58 ± 0.37 µg m−3 for Juriquilla and Altzomoni, respectively. The principal contributors for the highest BC concentration in Juriquilla were anthropogenic sources, while pollutants transport from nearby cities was more important for Altzomoni. Comparison between this analysis and previous reports from 2015 for both sampling sites demonstrated an increase in BC concentration. Results of this study could contribute to a better understanding of BC effects under different emission conditions and provide a scientific reference for developing BC reduction strategies over Mexico

    (+)-Ascosalitoxin and Vermelhotin, a Calmodulin Inhibitor, from an Endophytic Fungus Isolated from <i>Hintonia latiflora</i>

    No full text
    Chemical investigation of the endophytic MEXU 26343, isolated from the medicinal plant <i>Hintonia latiflora</i>, yielded the known polyketide vermelhotin (<b>1</b>) and a new salicylic aldehyde derivative, namely, 9<i>S</i>,11<i>R</i>-(+)-ascosalitoxin (<b>2</b>). The structure and absolute configuration of the new compound were established through extensive NMR spectroscopy and molecular modeling calculations at the DFT B3LYP/DGDZVP level, which included the comparison between theoretical and experimental optical rotation values. In addition, chemical transformations of <b>2</b> yielded suitable derivatives for NOESY and <sup>1</sup>H–<sup>1</sup>H NMR coupling constant analyses, which reinforce the stereochemical assignment. The potential affinity of <b>1</b> and <b>2</b> with (Ca<sup>2+</sup>)<sub>4</sub>-<i>h</i>CaM in solution was measured using the fluorescent biosensor <i>h</i>CaM M124C-<i>mBBr</i>. The results showed that <b>1</b> bound to the protein with a dissociation constant (<i>K</i><sub>d</sub>) of 0.25 ± 0.04 μM, close to that of chlorpromazine (<i>K</i><sub>d</sub> = 0.64 ± 0.03 μM), a classical CaM inhibitor. The stoichiometry ratio of <b>1</b> to (Ca<sup>2+</sup>)<sub>4</sub>-<i>h</i>CaM was 1:4, similar to other well-known CaM ligands

    Genomic and Biochemical Characterization of Bifidobacterium pseudocatenulatum JCLA3 Isolated from Human Intestine

    No full text
    Bifidobacteria have been investigated due to their mutualistic microbe&ndash;host interaction with humans throughout their life. This work aims to make a biochemical and genomic characterization of Bifidobacterium pseudocatenulatum JCLA3. By multilocus analysis, the species of B. pseudocatenulatum JCLA3 was established as pseudocatenulatum. It contains one circular genome of 2,369,863 bp with G + C content of 56.6%, no plasmids, 1937 CDSs, 54 tRNAs, 16 rRNAs, 1 tmRNA, 1 CRISPR region, and 401 operons predicted, including a CRISPR-Cas operon; it encodes an extensive number of enzymes, which allows it to utilize different carbohydrates. The ack gene was found as part of an operon formed by xfp and pta genes. Two genes of ldh were found at different positions. Chromosomally encoded resistance to ampicillin and cephalothin, non-hemolytic activity, and moderate inhibition of Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 6538 were demonstrated by B. pseudocatenulatum JCLA3; it can survive 100% in simulated saliva, can tolerate primary and secondary glyco- or tauro-conjugated bile salts but not in a mix of bile; the strain did not survive at pH 1.5&ndash;5. The cbh gene coding to choloylglycine hydrolase was identified in its genome, which could be related to the ability to deconjugate secondary bile salts. Intact cells showed twice as much antioxidant activity than debris. B. pseudocatenulatum JCLA3 showed 49% of adhesion to Caco-2 cells. The genome and biochemical analysis help to elucidate further possible biotechnological applications of B. pseudocatenulatum JCLA3

    Design, Synthesis and Anticandidal Evaluation of Indazole and Pyrazole Derivatives

    No full text
    Candidiasis, caused by yeasts of the genus Candida, is the second cause of superficial and mucosal infections and the fourth cause of bloodstream infections. Although some antifungal drugs to treat candidiasis are available, resistant strains to current therapies are emerging. Therefore, the search for new candicidal compounds is certainly a priority. In this regard, a series of indazole and pyrazole derivatives were designed in this work, employing bioisosteric replacement, homologation, and molecular simplification as new anticandidal agents. Compounds were synthesized and evaluated against C. albicans, C. glabrata, and C. tropicalis strains. The series of 3-phenyl-1H-indazole moiety (10a–i) demonstrated to have the best broad anticandidal activity. Particularly, compound 10g, with N,N-diethylcarboxamide substituent, was the most active against C. albicans and both miconazole susceptible and resistant C. glabrata species. Therefore, the 3-phenyl-1H-indazole scaffold represents an opportunity for the development of new anticandidal agents with a new chemotype

    Influence of 75% ethanol extract and liquid:liquid partitions from <i>Echinacea purpurea</i> extract on TNF-α production by RAW 264.7 cells.

    No full text
    <p>Extract and partitions were tested at concentrations of 50 μg/mL (A and C) and 100 μg/mL (B and D) expressed as mass of extract per assay well volume. Cells were unstimulated in A and B and stimulated with 100 ng/mL LPS in C and D. Supernatants were harvested after 16–18 hr. and levels of TNF-α measured by ELISA. M, media; L, LPS; EE, ethanol extract; HL, hexane layer, ML, methane layer; WL, water layer; CL, chloroform layer. Values shown are means +/- SD from a single representative experiment. Statistical analysis was performed using the Student’s T test, *p<0.05, **p<0.01, ***p<0.001.</p

    Structure and activity of xanthienopyran.

    No full text
    <p>The structure of xanthienopyran was elucidated by comparison of NMR and MS data with published values (A). The influence of xanthienopyran on TNF-α secretion by RAW 264.7 macrophage-like cells alone (B) or in the presence of 10 ng/mL of LPS (C) was evaluated. The influence of dodeca-2E,4E-dienoic acid isobutylamide (<b>15</b>) on TNF-α secretion by RAW 264.7 macrophage-like cells in the presence of 10 ng/mL of LPS (C) was evaluated as comparison. Treatments were for 16–18 hr. and levels of TNF-α in supernatants were quantified by ELISA. Data shown are means +/- SEM from three independent experiments. Statistical analysis was performed using the Student’s T test, *p<0.05.</p
    corecore