4 research outputs found

    Chondroitin Sulfate Glycosaminoglycan Matrices Promote Neural Stem Cell Maintenance and Neuroprotection Post-Traumatic Brain Injury

    No full text
    There are currently no effective treatments for moderate-to-severe traumatic brain injuries (TBIs). The paracrine functions of undifferentiated neural stem cells (NSCs) are believed to play a significant role in stimulating the repair and regeneration of injured brain tissue. We therefore hypothesized that fibroblast growth factor (FGF2) enriching chondroitin sulfate glycosaminoglycan (CS-GAG) matrices can maintain the undifferentiated state of neural stem cells (NSCs) and facilitate brain tissue repair subacutely post-TBI. Rats subjected to a controlled cortical impactor (CCI) induced TBI were intraparenchymally injected with CS-GAG matrices alone or with CS-GAG matrices containing PKH26GL labeled allogeneic NSCs. Nissl staining of brain tissue 4 weeks post-TBI demonstrated the significantly enhanced (<i>p</i> < 0.05) tissue protection in CS-GAG treated animals when compared to TBI only control, and NSC only treated animals. CS-GAG-NSC treated animals demonstrated significantly enhanced (<i>p</i> < 0.05) FGF2 retention, and maintenance of PKH26GL labeled NSCs as indicated by enhanced Sox1+ and Ki67+ cell presence over other differentiated cell types. Lastly, all treatment groups and sham controls exhibited a significantly (<i>p</i> < 0.05) attenuated GFAP+ reactive astrocyte presence in the lesion site when compared to TBI only controls

    Chondroitin Sulfate Glycosaminoglycan Hydrogels Create Endogenous Niches for Neural Stem Cells

    No full text
    Neural stem cells (NSCs) possess great potential for neural tissue repair after traumatic injuries to the central nervous system (CNS). However, poor survival and self-renewal of NSCs after injury severely limits its therapeutic potential. Sulfated chondroitin sulfate glycosaminoglycans (CS-GAGs) linked to CS proteoglycans (CSPGs) in the brain extracellular matrix (ECM) have the ability to bind and potentiate trophic factor efficacy, and promote NSC self-renewal in vivo. In this study, we investigated the potential of CS-GAG hydrogels composed of monosulfated CS-4 (CS-A), CS-6 (CS-C), and disulfated CS-4,6 (CS-E) CS-GAGs as NSC carriers, and their ability to create endogenous niches by enriching specific trophic factors to support NSC self-renewal. We demonstrate that CS-GAG hydrogel scaffolds showed minimal swelling and degradation over a period of 15 days in vitro, absorbing only 6.5 ± 0.019% of their initial weight, and showing no significant loss of mass during this period. Trophic factors FGF-2, BDNF, and IL10 bound with high affinity to CS-GAGs, and were significantly (<i>p</i> < 0.05) enriched in CS-GAG hydrogels when compared to unsulfated hyaluronic acid (HA) hydrogels. Dissociated rat subventricular zone (SVZ) NSCs when encapsulated in CS-GAG hydrogels demonstrated ∼88.5 ± 6.1% cell viability in vitro. Finally, rat neurospheres in CS-GAG hydrogels conditioned with the mitogen FGF-2 demonstrated significantly (<i>p</i> < 0.05) higher self-renewal when compared to neurospheres cultured in unconditioned hydrogels. Taken together, these findings demonstrate the ability of CS-GAG based hydrogels to regulate NSC self-renewal, and facilitate growth factor enrichment locally

    Assumptions Regarding the Free Trade Agreement-FTA and Other Economic Integration Schemes Followed by Colombia (Implicaciones Del Tlc Y Otros Esquemas De Intergración Para Colombia)

    No full text
    corecore